Jian Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4375052/publications.pdf

Version: 2024-02-01

		279487	377514
35	2,216	23	34
papers	citations	h-index	g-index
25	25	25	2402
35	35	35	2493
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. Journal of Colloid and Interface Science, 2007, 310, 260-269.	5.0	284
2	Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science, 2006, 303, 557-563.	5.0	268
3	Pickering emulsions stabilized solely by layered double hydroxides particles: The effect of salt on emulsion formation and stability. Journal of Colloid and Interface Science, 2006, 302, 159-169.	5.0	187
4	Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 126-135.	2.3	182
5	Aqueous foams stabilized by Laponite and CTAB. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 406-413.	2.3	137
6	Aqueous foams stabilized with particles and nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, 1-8.	2.3	105
7	Highly Stable Concentrated Nanoemulsions by the Phase Inversion Composition Method at Elevated Temperature. Langmuir, 2012, 28, 14547-14552.	1.6	90
8	Foams stabilized by Laponite nanoparticles and alkylammonium bromides with different alkyl chain lengths. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355, 151-157.	2.3	79
9	Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles. Langmuir, 2010, 26, 5397-5404.	1.6	78
10	Pickering emulsions stabilized by paraffin wax and Laponite clay particles. Journal of Colloid and Interface Science, 2009, 336, 314-321.	5.0	72
11	Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 356, 71-77.	2.3	58
12	Synergistic stabilization of emulsions by poly(oxypropylene)diamine and Laponite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353, 117-124.	2.3	56
13	Aqueous foams stabilized by hexylamine-modified Laponite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 40-46.	2.3	53
14	Preparation of positively charged oil/water nano-emulsions with a sub-PIT method. Journal of Colloid and Interface Science, 2011, 361, 565-572.	5.0	53
15	O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 102-108.	2.3	52
16	pH Switchable Emulsions Based on Dynamic Covalent Surfactants. Langmuir, 2017, 33, 3040-3046.	1.6	51
17	Effect of inorganic electrolytes on the formation and the stability of water-in-oil (W/O) emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 429, 82-90.	2.3	50
18	Double Inversion of Emulsions Induced by Salt Concentration. Langmuir, 2012, 28, 6769-6775.	1.6	48

#	Article	IF	Citations
19	Ca ²⁺ Ion Responsive Pickering Emulsions Stabilized by PSSMA Nanoaggregates. Langmuir, 2013, 29, 14421-14428.	1.6	46
20	Surface modification of natural Na-montmorillonite in alkane solvents using a quaternary ammonium surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 426, 26-32.	2.3	46
21	In situ formed Mg(OH)2 nanoparticles as pH-switchable stabilizers for emulsions. Journal of Colloid and Interface Science, 2011, 359, 155-162.	5.0	27
22	Effect of cetyltrimethylammonium bromide addition on the emulsions stabilized by montmorillonite. Colloid and Polymer Science, 2014, 292, 441-447.	1.0	26
23	Phase Inversion of Emulsions Containing a Lipophilic Surfactant Induced by Clay Concentration. Langmuir, 2013, 29, 3889-3894.	1.6	25
24	Kinetic studies of lipase-catalyzed esterification in water-in-oil microemulsions and the catalytic behavior of immobilized lipase in MBGs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 194, 41-47.	2.3	22
25	Preparation of highly stable concentrated W/O nanoemulsions by PIC method at elevated temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 97-102.	2.3	22
26	Roles of methyl orange in preparation of emulsions stabilized by layered double hydroxide particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 173-180.	2.3	21
27	Fabrication of Composite Polymer Foam Films at the Liquid/Liquid Interface through Emulsion-Directed Assembly and Adsorption Processes. Langmuir, 2014, 30, 2178-2187.	1.6	19
28	Temperature induced formation of particle coated non-spherical droplets. Journal of Colloid and Interface Science, 2011, 359, 171-178.	5.0	14
29	pH-responsive pickering foam created from self-aggregate polymer using dynamic covalent bond. Journal of Colloid and Interface Science, 2021, 597, 383-392.	5.0	12
30	Dispersion stability of organoclay in octane improved by adding nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 180-186.	2.3	11
31	Aqueous foam stabilized by plate-like particles in the presence of sodium butyrate. Journal of Colloid and Interface Science, 2010, 343, 87-93.	5.0	8
32	Effect of liquid paraffin on the stability of aqueous foam in the presence and absence of electrolytes. Colloid and Polymer Science, 2010, 288, 1271-1280.	1.0	5
33	Cd2+Counterion-Assisted Synthesis of Uniform CdS Nanospheres Capped with the Anionic Surfactant Sodium dodecylsulfate. Journal of Dispersion Science and Technology, 2014, 35, 76-83.	1.3	5
34	Effect of polyisobutylenesuccinimide on low-temperature rheology and dispersibility of clay particles in mineral oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431, 133-141.	2.3	4
35	A study of the microstructure of CTAB/1-butanol/octane/ water system by PGSE-NMR and Cryo-TEM. Science Bulletin, 2001, 46, 1272-1276.	1.7	0