## **Zhihong Yang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374950/publications.pdf Version: 2024-02-01



ZHIHONG YANG

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Role of tubular epithelial arginase-II in renal inflammaging. Npj Aging and Mechanisms of Disease, 2021,<br>7, 5.                                                                                  | 4.5 | 9         |
| 2  | PER2 mediates CREB-dependent light induction of the clock gene Per1. Scientific Reports, 2021, 11, 21766.                                                                                          | 3.3 | 12        |
| 3  | Hypoxia Induces Renal Epithelial Injury and Activates Fibrotic Signaling Through Up-Regulation of Arginase-II. Frontiers in Physiology, 2021, 12, 773719.                                          | 2.8 | 12        |
| 4  | Inhibition of p38mapk Reduces Adipose Tissue Inflammation in Aging Mediated by Arginase-II.<br>Pharmacology, 2020, 105, 491-504.                                                                   | 2.2 | 7         |
| 5  | Arginaseâ€I promotes melanoma migration and adhesion through enhancing hydrogen peroxide<br>production and STAT3 signaling. Journal of Cellular Physiology, 2020, 235, 9997-10011.                 | 4.1 | 20        |
| 6  | Detrimental Effects of Chronic L-Arginine Rich Food on Aging Kidney. Frontiers in Pharmacology, 2020, 11, 582155.                                                                                  | 3.5 | 11        |
| 7  | Myosin 1b Regulates Nuclear AKT Activation by Preventing Localization of PTEN in the Nucleus.<br>IScience, 2019, 19, 39-53.                                                                        | 4.1 | 10        |
| 8  | Hypoxia Enhances Endothelial Intercellular Adhesion Molecule 1 Protein Level Through Upregulation of Arginase Type II and Mitochondrial Oxidative Stress. Frontiers in Physiology, 2019, 10, 1003. | 2.8 | 32        |
| 9  | Arginase-II activates mTORC1 through myosin-1b in vascular cell senescence and apoptosis. Cell Death and Disease, 2018, 9, 313.                                                                    | 6.3 | 19        |
| 10 | Kidney Mass Reduction Leads to <scp>l</scp> â€Arginine Metabolismâ€Dependent Blood Pressure Increase<br>in Mice. Journal of the American Heart Association, 2018, 7, .                             | 3.7 | 11        |
| 11 | Arginaseâ€II negatively regulates renal aquaporinâ€⊋ and water reabsorption. FASEB Journal, 2018, 32, 5520-5531.                                                                                   | 0.5 | 9         |
| 12 | Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell<br>Apoptosis in Aging. Diabetes, 2017, 66, 1636-1649.                                             | 0.6 | 30        |
| 13 | Arginase-I enhances vascular endothelial inflammation and senescence through eNOS-uncoupling.<br>BMC Research Notes, 2017, 10, 82.                                                                 | 1.4 | 34        |
| 14 | Ticagrelor, but not clopidogrel, reduces arterial thrombosis via endothelial tissue factor<br>suppression. Cardiovascular Research, 2017, 113, 61-69.                                              | 3.8 | 25        |
| 15 | Arginase-II Deficiency Extends Lifespan in Mice. Frontiers in Physiology, 2017, 8, 682.                                                                                                            | 2.8 | 33        |
| 16 | Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in<br>Diet-Induced Obesity. Frontiers in Physiology, 2016, 7, 560.                                      | 2.8 | 15        |
| 17 | Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation. Scientific Reports, 2016, 6, 20405.                               | 3.3 | 35        |
| 18 | <em>En Face</em> Detection of Nitric Oxide and Superoxide in Endothelial Layer of Intact Arteries.<br>Journal of Visualized Experiments, 2016, , 53718.                                            | 0.3 | 5         |

ZHIHONG YANG

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                                                                                                                                                      | 9.1 | 4,701     |
| 20 | Role of p38 mitogen-activated protein kinase in vascular endothelial aging: Interaction with Arginase-II<br>and S6K1 signaling pathway. Aging, 2015, 7, 70-81.                                                                                                                                  | 3.1 | 40        |
| 21 | Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling. Aging, 2014, 6, 369-379.                                                                                                                                                       | 3.1 | 31        |
| 22 | ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy, 2014, 10, 2223-2238.                                                                                                                                             | 9.1 | 115       |
| 23 | Functions of Arginase Isoforms in Macrophage Inflammatory Responses: Impact on Cardiovascular<br>Diseases and Metabolic Disorders. Frontiers in Immunology, 2014, 5, 533.                                                                                                                       | 4.8 | 200       |
| 24 | p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-Uncoupling in Obesity.<br>Cardiovascular Diabetology, 2014, 13, 113.                                                                                                                                              | 6.8 | 44        |
| 25 | Functions and Mechanisms of Arginase in Age-Associated Cardiovascular Diseases. Current<br>Translational Geriatrics and Experimental Gerontology Reports, 2013, 2, 268-274.                                                                                                                     | 0.7 | 8         |
| 26 | Endothelial NF-ÂB: the remote controller of the backyard fire in the vascular wall?. Cardiovascular<br>Research, 2013, 97, 8-9.                                                                                                                                                                 | 3.8 | 2         |
| 27 | Arginaseâ€II Induces Vascular Smooth Muscle Cell Senescence and Apoptosis Through p66Shc and p53<br>Independently of Its <scp>l</scp> â€Arginine Ureahydrolase Activity: Implications for Atherosclerotic<br>Plaque Vulnerability. Journal of the American Heart Association, 2013, 2, e000096. | 3.7 | 71        |
| 28 | Arginase: The Emerging Therapeutic Target for Vascular Oxidative Stress and Inflammation. Frontiers in Immunology, 2013, 4, 149.                                                                                                                                                                | 4.8 | 103       |
| 29 | Arginase II Promotes Macrophage Inflammatory Responses Through Mitochondrial Reactive Oxygen<br>Species, Contributing to Insulin Resistance and Atherogenesis. Journal of the American Heart<br>Association, 2012, 1, e000992.                                                                  | 3.7 | 107       |
| 30 | Perspectives of Targeting mTORC1–S6K1 in Cardiovascular Aging. Frontiers in Physiology, 2012, 3, 5.                                                                                                                                                                                             | 2.8 | 29        |
| 31 | p38 Mitogen-Activated Protein Kinase Is Required for Glucosamine-Induced Endothelial Nitric Oxide<br>Synthase Uncoupling and Plasminogen-Activator Inhibitor Expression. Circulation Journal, 2012, 76,<br>2015-2022.                                                                           | 1.6 | 9         |
| 32 | Positive crosstalk between arginaseâ€I and S6K1 in vascular endothelial inflammation and aging. Aging<br>Cell, 2012, 11, 1005-1016.                                                                                                                                                             | 6.7 | 103       |
| 33 | Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol. PLoS ONE, 2011, 6, e19237.                                                                                                                                                          | 2.5 | 131       |
| 34 | CD36: the common soil for inflammation in obesity and atherosclerosis?. Cardiovascular Research, 2011, 89, 485-486.                                                                                                                                                                             | 3.8 | 8         |
| 35 | The Vascular SIRTainty. Aging, 2010, 2, 331-332.                                                                                                                                                                                                                                                | 3.1 | 5         |
| 36 | <i>O</i> -Inked Î <sup>2</sup> -N-acetylglucosamine During Hyperglycemia Exerts Both Anti-Inflammatory and<br>Pro-Oxidative Properties in the Endothelial System. Oxidative Medicine and Cellular Longevity, 2009, 2,<br>172-175.                                                               | 4.0 | 17        |

ZHIHONG YANG

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor<br>L-norvaline. BMC Cardiovascular Disorders, 2009, 9, 12.                                                                         | 1.7 | 57        |
| 38 | Mutation of the Circadian Clock Gene Per2 Alters Vascular Endothelial Function. Circulation, 2007, 115, 2188-2195.                                                                                                                   | 1.6 | 197       |
| 39 | Endothelial arginase: A new target in atherosclerosis. Current Hypertension Reports, 2006, 8, 54-59.                                                                                                                                 | 3.5 | 72        |
| 40 | Recent Advances in Understanding Endothelial Dysfunction in Atherosclerosis. Clinical Medicine and Research, 2006, 4, 53-65.                                                                                                         | 0.8 | 161       |
| 41 | Endothelial nitric oxide synthase gene transfer restores endothelium–dependent relaxations and attenuates lesion formation in carotid arteries in apolipoprotein E–deficient mice. Basic Research in Cardiology, 2005, 100, 102-111. | 5.9 | 21        |
| 42 | Thrombin Stimulates Human Endothelial Arginase Enzymatic Activity via RhoA/ROCK Pathway.<br>Circulation, 2004, 110, 3708-3714.                                                                                                       | 1.6 | 223       |
| 43 | PKC is required for activation of ROCK by RhoA in human endothelial cells. Biochemical and Biophysical Research Communications, 2003, 304, 714-719.                                                                                  | 2.1 | 43        |
| 44 | Felodipine inhibits nuclear translocation of p42/44 mitogen-activated protein kinase and human smooth muscle cell growth. Cardiovascular Research, 2002, 53, 227-231.                                                                | 3.8 | 6         |
| 45 | Rho GTPase/Rho Kinase Negatively Regulates Endothelial Nitric Oxide Synthase Phosphorylation<br>through the Inhibition of Protein Kinase B/Akt in Human Endothelial Cells. Molecular and Cellular<br>Biology, 2002, 22, 8467-8477.   | 2.3 | 377       |
| 46 | Phorbol Ester Downregulates PDGFÎ <sup>2</sup> Receptor via PKCÎ <sup>2</sup> 1 in Vascular Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 2001, 286, 372-375.                                            | 2.1 | 5         |
| 47 | Thrombin Suppresses Endothelial Nitric Oxide Synthase and Upregulates Endothelin-Converting Enzyme-1 Expression by Distinct Pathways. Circulation Research, 2001, 89, 583-590.                                                       | 4.5 | 162       |
| 48 | HMC-CoA reductase inhibition improves endothelial cell function and inhibits smooth muscle cell proliferation in human saphenous veins. Journal of the American College of Cardiology, 2000, 36, 1691-1697.                          | 2.8 | 103       |
| 49 | Different Proliferative Properties of Smooth Muscle Cells of Human Arterial and Venous Bypass<br>Vessels. Circulation, 1998, 97, 181-187.                                                                                            | 1.6 | 126       |