Liangsheng Hu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4374790/liangsheng-hu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,531 49 50 22 g-index h-index citations papers 5.62 10.5 51 3,547 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
49	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. <i>Chemical Reviews</i> , 2020 , 120, 851-918	68.1	722
48	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. <i>Coordination Chemistry Reviews</i> , 2017 , 352, 306-327	23.2	315
47	Hydrogenated V2O5 Nanosheets for Superior Lithium Storage Properties. <i>Advanced Functional Materials</i> , 2016 , 26, 784-791	15.6	110
46	Synthesis and Photocatalytic Activity of Highly Ordered TiO2 and SrTiO3/TiO2 Nanotube Arrays on Ti Substrates. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 2771-2778	3.8	103
45	An antibacterial platform based on capacitive carbon-doped TiO nanotubes after direct or alternating currentItharging. <i>Nature Communications</i> , 2018 , 9, 2055	17.4	99
44	Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A. <i>Environmental Science & Electrochemical Detection of Bisphenol A. Environmental Science & Electrochemical Detection of Bisphenol A. </i>	10.3	97
43	Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. <i>Nano Energy</i> , 2016 , 26, 603-609	17.1	92
42	Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. <i>Nano Energy</i> , 2018 , 52, 360-368	17.1	88
41	In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co2V2O7 nanosheets as efficient oxygen evolution reaction electrocatalysts. <i>Nano Energy</i> , 2017 , 34, 1-7	17.1	81
40	Photocatalytic water splitting by N-TiO on MgO (111) with exceptional quantum efficiencies at elevated temperatures. <i>Nature Communications</i> , 2019 , 10, 4421	17.4	76
39	Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: An advanced alkaline hydrogen evolution electrocatalyst. <i>Nano Energy</i> , 2018 , 53, 66-73	17.1	72
38	Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 781, 155-160	4.1	66
37	Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. <i>Analytical Chemistry</i> , 2011 , 83, 8138-44	7.8	62
36	One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates. <i>Applied Physics Letters</i> , 2008 , 93, 013105	3.4	51
35	Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. <i>Nano Energy</i> , 2017 , 34, 515-523	17.1	49
34	Mechanism of cell repellence on quasi-aligned nanowire arrays on Ti alloy. <i>Biomaterials</i> , 2010 , 31, 8341-	- 9 15.6	48
33	CuZnSnS/MoS-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation. <i>Scientific Reports</i> , 2017 , 7, 39411	4.9	40

(2018-2010)

32	Core-shell TiC/C quasi-aligned nanofiber arrays on biomedical Ti6Al4V for sensitive electrochemical biosensing. <i>Chemical Communications</i> , 2010 , 46, 6828-30	5.8	34	
31	Recyclable Non-Enzymatic Glucose Sensor Based on Ni/NiTiO /TiO Nanotube Arrays. <i>ChemPlusChem</i> , 2015 , 80, 576-582	2.8	29	
30	Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode. <i>Electrochimica Acta</i> , 2016 , 214, 201-207	6.7	25	
29	Use of carbon supports with copper ion as a highly sensitive non-enzymatic glucose sensor. <i>Sensors and Actuators B: Chemical</i> , 2019 , 282, 187-196	8.5	25	
28	Hydrothermal synthesis of perovskite-type MTiO3 (M = Zn, Co, Ni)/TiO2 nanotube arrays from an amorphous TiO2 template. <i>CrystEngComm</i> , 2014 , 16, 10280-10285	3.3	23	
27	Porous Dual-Layered MoOx Nanotube Arrays with Highly Conductive TiN Cores for Supercapacitors. <i>ChemElectroChem</i> , 2015 , 2, 512-517	4.3	22	
26	Palladium Separation by Pd-Catalyzed Gel Formation via Alkyne Coupling. <i>Chemistry of Materials</i> , 2019 , 31, 7386-7394	9.6	20	
25	Nonleaching Antibacterial Concept Demonstrated by In Situ Construction of 2D Nanoflakes on Magnesium. <i>Advanced Science</i> , 2020 , 7, 1902089	13.6	20	
24	Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. <i>Coordination Chemistry Reviews</i> , 2022 , 454, 214340	23.2	19	
23	Controllable growth of conical and cylindrical TiO2-carbon core-shell nanofiber arrays and morphologically dependent electrochemical properties. <i>Chemistry - A European Journal</i> , 2011 , 17, 1455	52 - 8 ⁸	15	
22	Cull-Mediated Ultra-efficient Electrooxidation of Glucose. ChemElectroChem, 2017, 4, 2788-2792	4.3	14	
21	Fabrication and Photocatalytic Activity of Nanoporous WO3 Film. <i>Nanoscience and Nanotechnology Letters</i> , 2010 , 2, 51-57	0.8	14	
20	Dominant Factors Governing the Electron Transfer Kinetics and Electrochemical Biosensing Properties of Carbon Nanofiber Arrays. <i>ACS Applied Materials & District Materials</i> (2016), 8, 28872-28879	9.5	14	
19	Arrays of nanofibers composed of a TiC core and a carbon coating for sensitive electrochemical detection of hydrazine. <i>Mikrochimica Acta</i> , 2011 , 175, 137-143	5.8	12	
18	Novel Cu-Fe bi-metal oxide quantum dots coupled g-C3N4 nanosheets with H2O2 adsorption-activation trade-off for efficient photo-Fenton catalysis. <i>Applied Catalysis B: Environmental</i> , 2021 , 120765	21.8	12	
17	Blue ordered/disordered Janus-type TiO2 nanoparticles for enhanced photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22828-22839	13	10	
16	TiO2 film supported by vertically aligned gold nanorod superlattice array for enhanced photocatalytic hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 417, 127900	14.7	8	
15	Development of a novel tridentate ligand for colorimetric detection of Mn based on AgNPs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018 , 202, 244-251	4.4	7	

14	Recent Advances in Structural Engineering of 2D Hexagonal Boron Nitride Electrocatalysts. <i>Nano Energy</i> , 2021 , 91, 106661	17.1	6
13	A high-performance electrocatalyst composed of nickel clusters encapsulated with a carbon network on TiN nanaowire arrays for the oxygen evolution reaction. <i>Applied Surface Science</i> , 2021 , 567, 150779	6.7	6
12	Creating Multiple Parallel Internal Phase Junctions on ZnS Nanoparticles as Highly Active Catalytic Sites. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800611	4.6	5
11	Insights into enhancement of photocatalytic properties of g-C3N4 by local electric field induced by polarization of MgO(111). <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105922	6.8	5
10	Enhanced photocatalytic degradation of 4-chlorophenol under visible light over carbon nitride nanosheets with carbon vacancies. <i>Nanotechnology</i> , 2021 , 32,	3.4	3
9	Growth of well-aligned ZnO nanorod arrays on Si substrates by thermal evaporation of Cu-Zn alloy powders. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 4786-91	1.3	2
8	Antibacterial Biomaterials: Nonleaching Antibacterial Concept Demonstrated by In Situ Construction of 2D Nanoflakes on Magnesium (Adv. Sci. 1/2020). <i>Advanced Science</i> , 2020 , 7, 2070006	13.6	2
7	Se-NiSe2 hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting. <i>Journal of Materials Science and Technology</i> , 2022 , 118, 136-143	9.1	2
6	Fabrication and photoelectrochemical properties of nanoporous WO3 film 2010,		1
5	Direct growth of hexagonal Cd(OH)2 nanoplates from and on cadmium substrate. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 3747-51	1.3	1
4	Nitrogen-doped carbon coated TiC nanofiber arrays deposited on Ti-6Al-4V for selective and sensitive electrochemical detection of dopamine. <i>Surface and Coatings Technology</i> , 2020 , 402, 126266	4.4	1
3	Photochemical properties of SnO2 nanorods arrays grown on nanoporous stainless steel. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 9989-9995	2.1	1
2	Plasmon-enhanced hydrogen evolution on Pt-anchored titanium nitride nanowire arrays. <i>Applied Surface Science</i> , 2022 , 598, 153745	6.7	1
1	N-Doped Carbon Coated TiC Nanofiber Arrays on Ti-6Al-4V for Sensitive Electrochemical Determination of Cr(VI). <i>Electroanalysis</i> ,	3	