
Jan A Van Gils

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374605/publications.pdf Version: 2024-02-01

IAN A VAN CUS

#	Article	IF	CITATIONS
1	The ecology of information: an overview on the ecological significance of making informed decisions. Oikos, 2010, 119, 304-316.	2.7	235
2	A Three-Stage Symbiosis Forms the Foundation of Seagrass Ecosystems. Science, 2012, 336, 1432-1434.	12.6	204
3	Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus. PLoS ONE, 2007, 2, e184.	2.5	195
4	Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science, 2016, 352, 819-821.	12.6	160
5	Cost-benefit analysis of mollusc-eating in a shorebird II. Optimizing gizzard size in the face of seasonal demands. Journal of Experimental Biology, 2003, 206, 3369-3380.	1.7	123
6	Digestive bottleneck affects foraging decisions in red knots Calidris canutus . I. Prey choice. Journal of Animal Ecology, 2005, 74, 105-119.	2.8	109
7	FORAGING IN A TIDALLY STRUCTURED ENVIRONMENT BY RED KNOTS (CALIDRIS CANUTUS): IDEAL, BUT NOT FREE. Ecology, 2006, 87, 1189-1202.	3.2	106
8	Incompletely Informed Shorebirds That Face a Digestive Constraint Maximize Net Energy Gain When Exploiting Patches. American Naturalist, 2003, 161, 777-793.	2.1	98
9	Digestive bottleneck affects foraging decisions in red knots Calidris canutus . II. Patch choice and length of working day. Journal of Animal Ecology, 2005, 74, 120-130.	2.8	96
10	Holling's Functional Response Model as a Tool to Link the Food-Finding Mechanism of a Probing Shorebird with its Spatial Distribution. Journal of Animal Ecology, 1995, 64, 493.	2.8	94
11	Shellfish Dredging Pushes a Flexible Avian Top Predator out of a Marine Protected Area. PLoS Biology, 2006, 4, e376.	5.6	82
12	High-tide habitat choice: insights from modelling roost selection by shorebirds around a tropical bay. Animal Behaviour, 2006, 72, 563-575.	1.9	81
13	Reinterpretation of gizzard sizes of red knots world-wide emphasises overriding importance of prey quality at migratory stopover sites. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2609-2618.	2.6	79
14	Landscapeâ€scale experiment demonstrates that Wadden Sea intertidal flats are used to capacity by molluscivore migrant shorebirds. Journal of Animal Ecology, 2009, 78, 1259-1268.	2.8	77
15	Beyond the information centre hypothesis: communal roosting for information on food, predators, travel companions and mates?. Oikos, 2010, 119, 277-285.	2.7	70
16	Drought, Mutualism Breakdown, and Landscape-Scale Degradation of Seagrass Beds. Current Biology, 2016, 26, 1051-1056.	3.9	69
17	Chronobiology of interspecific interactions in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160248.	4.0	69
18	Digestively constrained predators evade the cost of interference competition. Journal of Animal Ecology, 2004, 73, 386-398.	2.8	65

#	Article	IF	CITATIONS
19	Designing a benthic monitoring programme with multiple conflicting objectives. Methods in Ecology and Evolution, 2012, 3, 526-536.	5.2	62
20	Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nature Communications, 2018, 9, 4263.	12.8	62
21	How habitat-modifying organisms structure the food web of two coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152326.	2.6	58
22	Carrying capacity models should not use fixed prey density thresholds: a plea for using more tools of behavioural ecology. Oikos, 2004, 104, 197-204.	2.7	57
23	Seagrass–Sediment Feedback: An Exploration Using a Non-recursive Structural Equation Model. Ecosystems, 2012, 15, 1380-1393.	3.4	57
24	Do body condition and plumage during fuelling predict northwards departure dates of Great Knots Calidris tenuirostris from north-west Australia?. Ibis, 2003, 146, 46-60.	1.9	52
25	Cost-benefit analysis of mollusc eating in a shorebird I. Foraging and processing costs estimated by the doubly labelled water method. Journal of Experimental Biology, 2003, 206, 3361-3368.	1.7	51
26	Suitability of calcein as an in situ growth marker in burrowing bivalves. Journal of Experimental Marine Biology and Ecology, 2011, 399, 1-7.	1.5	44
27	Persistent use of a shorebird staging site in the Yellow Sea despite severe declines in food resources implies a lack of alternatives. Bird Conservation International, 2018, 28, 534-548.	1.3	42
28	Optimal movement between patches under incomplete information about the spatial distribution of food items. Theoretical Population Biology, 2006, 70, 452-463.	1.1	41
29	The exception to the rule: retreating ice front makes Bewick's swans <i>Cygnus columbianus bewickii</i> migrate slower in spring than in autumn. Journal of Avian Biology, 2014, 45, 113-122.	1.2	41
30	Seasonal changes in mollusc abundance in a tropical intertidal ecosystem, Banc d'Arguin (Mauritania): Testing the †depletion by shorebirds' hypothesis. Estuarine, Coastal and Shelf Science, 2014, 136, 26-34.	2.1	40
31	Economic design in a long-distance migrating molluscivore: how fast-fuelling red knots in Bohai Bay, China, get away with small gizzards. Journal of Experimental Biology, 2013, 216, 3627-3636.	1.7	39
32	Reversed optimality and predictive ecology: burrowing depth forecasts population change in a bivalve. Biology Letters, 2009, 5, 5-8.	2.3	38
33	How do red knotsCalidris canutusleave Northwest Australia in May and reach the breeding grounds in June? Predictions of stopover times, fuelling rates and prey quality in the Yellow Sea. Journal of Avian Biology, 2005, 36, 494-500.	1.2	37
34	Shortâ€Term Foraging Costs and Longâ€Term Fueling Rates in Centralâ€Place Foraging Swans Revealed by Givingâ€Up Exploitation Times. American Naturalist, 2007, 169, 609-620.	2.1	37
35	Diet selection in a molluscivore shorebird across Western Europe: does it show short―or longâ€term intake rateâ€maximization?. Journal of Animal Ecology, 2010, 79, 53-62.	2.8	37
36	Scaling up ideals to freedom: are densities of red knots across western Europe consistent with ideal free distribution?. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2728-2736.	2.6	37

#	Article	IF	CITATIONS
37	Optimizing acceleration-based ethograms: the use of variable-time versus fixed-time segmentation. Movement Ecology, 2014, 2, 6.	2.8	37
38	Habitat carrying capacity is reached for the European eel in a small coastal catchment: evidence and implications for managing eel stocks. Freshwater Biology, 2011, 56, 952-968.	2.4	36
39	Personality drives physiological adjustments and is not related to survival. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133135.	2.6	36
40	Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130861.	2.6	32
41	Nutritional and reproductive strategies in a chemosymbiotic bivalve living in a tropical intertidal seagrass bed. Marine Ecology - Progress Series, 2014, 501, 113-126.	1.9	32
42	Trophic cascade induced by molluscivore predator alters poreâ€water biogeochemistry via competitive release of prey. Ecology, 2012, 93, 1143-1152.	3.2	31
43	Understanding spatial distributions: negative density-dependence in prey causes predators to trade-off prey quantity with quality. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20151557.	2.6	31
44	Interference from adults forces young red knots to forage for longer and in dangerous places. Animal Behaviour, 2014, 88, 137-146.	1.9	30
45	Digestive Capacity and Toxicity Cause Mixed Diets in Red Knots That Maximize Energy Intake Rate. American Naturalist, 2014, 183, 650-659.	2.1	28
46	Longer guts and higher food quality increase energy intake in migratory swans. Journal of Animal Ecology, 2008, 77, 1234-1241.	2.8	26
47	Morphological and digestive adjustments buffer performance: How staging shorebirds cope with severe food declines. Ecology and Evolution, 2019, 9, 3868-3878.	1.9	26
48	Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird. Journal of Animal Ecology, 2015, 84, 554-564.	2.8	25
49	Stateâ€dependent Bayesian foraging on spatially autocorrelated food distributions. Oikos, 2010, 119, 237-244.	2.7	24
50	AVIAN HERBIVORY: AN EXPERIMENT, A FIELD TEST, AND AN ALLOMETRIC COMPARISON WITH MAMMALS. Ecology, 2007, 88, 2926-2935.	3.2	23
51	Small-scale demographic structure suggests preemptive behavior in a flocking shorebird. Behavioral Ecology, 2012, 23, 1226-1233.	2.2	23
52	Sexâ€specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning. Ecology and Evolution, 2014, 4, 4009-4018.	1.9	23
53	Resource landscapes explain contrasting patterns of aggregation and site fidelity by red knots at two wintering sites. Movement Ecology, 2018, 6, 24.	2.8	23
54	Natural selection by pulsed predation: survival of the thickest. Ecology, 2015, 96, 1943-1956.	3.2	21

#	Article	IF	CITATIONS
55	Diet preferences as the cause of individual differences rather than the consequence. Journal of Animal Ecology, 2016, 85, 1378-1388.	2.8	21
56	Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integrative and Comparative Biology, 2016, 56, 317-329.	2.0	21
57	Benefits of foraging in small groups: An experimental study on public information use in red knots Calidris canutus. Behavioural Processes, 2015, 117, 74-81.	1.1	20
58	A facultative mutualistic feedback enhances the stability of tropical intertidal seagrass beds. Scientific Reports, 2018, 8, 12988.	3.3	20
59	Burrowing Behavior of a Deposit Feeding Bivalve Predicts Change in Intertidal Ecosystem State. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	17
60	Digestive Organ Size and Behavior of Red Knots (Calidris Canutus) Indicate the Quality of Their Benthic Food Stocks. Israel Journal of Ecology and Evolution, 2007, 53, 329-346.	0.6	16
61	Exploring the drivers of variation in trophic mismatches: A systematic review of longâ€ŧerm avian studies. Ecology and Evolution, 2021, 11, 3710-3725.	1.9	16
62	Red Knot diet reconstruction revisited: context dependence revealed by experiments at Banc d'Arguin, Mauritania. Bird Study, 2013, 60, 298-307.	1.0	15
63	Field measurements give biased estimates of functional response parameters, but help explain foraging distributions. Journal of Animal Ecology, 2015, 84, 565-575.	2.8	12
64	Structurally complex sea grass obstructs the sixth sense of a specialized avian molluscivore. Animal Behaviour, 2016, 115, 55-67.	1.9	12
65	Phenotype-limited distributions: short-billed birds move away during times that prey bury deeply. Royal Society Open Science, 2015, 2, 150073.	2.4	11
66	Food web consequences of an evolutionary arms race: Molluscs subject to crab predation on intertidal mudflats in Oman are unavailable to shorebirds. Journal of Biogeography, 2018, 45, 342-354.	3.0	11
67	Individual-Level Memory Is Sufficient to Create Spatial Segregation among Neighboring Colonies of Central Place Foragers. American Naturalist, 2021, 198, E37-E52.	2.1	11
68	Biological information in an ecological context. Oikos, 2010, 119, 201-202.	2.7	10
69	Why Afro-Siberian Red Knots <i>Calidris Canutus Canutus</i> have Stopped Staging in the Western Dutch Wadden Sea During Southward Migration. Ardea, 2010, 98, 155-160.	0.6	9
70	The interactive role of predation, competition and habitat conditions in structuring an intertidal bivalve population. Journal of Experimental Marine Biology and Ecology, 2020, 523, 151267.	1.5	9
71	Mismatchâ€induced growth reductions in a clade of Arcticâ€breeding shorebirds are rarely mitigated by increasing temperatures. Global Change Biology, 2022, 28, 829-847.	9.5	8
72	The Effect of Digestive Capacity on the Intake Rate of Toxic and Non-Toxic Prey in an Ecological Context. PLoS ONE, 2015, 10, e0136144.	2.5	7

#	Article	IF	CITATIONS
73	Migratory vertebrates shift migration timing and distributions in a warming Arctic. Animal Migration, 2021, 8, 110-131.	1.0	6
74	Individual diet differences in a molluscivore shorebird are associated with the size of body instruments for internal processing rather than for feeding. Journal of Avian Biology, 2019, 50, .	1.2	5
75	Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve. PLoS ONE, 2015, 10, e0140221.	2.5	5
76	Ways to be different: foraging adaptations that facilitate higher intake rates in a northerly-wintering shorebird compared to a low-latitude conspecific. Journal of Experimental Biology, 2015, 218, 1188-97.	1.7	4
77	The intertidal mudflats of Barr Al Hikman, Sultanate of Oman, as feeding, reproduction and nursery grounds for brachyuran crabs. Hydrobiologia, 2020, 847, 4295-4309.	2.0	4
78	Stomach fullness shapes prey choice decisions in crab plovers (Dromas ardeola). PLoS ONE, 2018, 13, e0194824.	2.5	3
79	FORAGING IN A TIDALLY STRUCTURED ENVIRONMENT BY RED KNOTS (CALIDRIS CANUTUS): IDEAL, BUT NOT FREE. , 0, .		1
80	Sulfur in lucinid bivalves inhibits intake rates of a molluscivore shorebird. Oecologia, 2022, 199, 69-78.	2.0	1
81	How do red knots Calidris canutus leave Northwest Australia in May and reach the breeding grounds in June? Predictions of stopover times, fuelling rates and prey quality in the Yellow Sea. Journal of Avian Biology, 2005, .	1.2	0