Chenghao Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374428/publications.pdf

Version: 2024-02-01

840776 713466 26 582 11 21 citations h-index g-index papers 27 27 27 833 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Switchable Induced-Transmission Filters Enabled by Vanadium Dioxide. Nano Letters, 2022, 22, 6-13.	9.1	15
2	Comment on "Electromagnetic force on structured metallic surfaces― Physical Review B, 2022, 105, .	3.2	1
3	Tuning carrier density and phase transitions in oxide semiconductors using focused ion beams. Nanophotonics, 2022, 11, 3923-3932.	6.0	10
4	Tunable Infrared Optics Enabled by Defect-Engineering of Vanadium Dioxide Using Focused Ion Beam. , 2021, , .		0
5	Using Bottom-Up Lithography and Optical Nonlocality to Create Short-Wave Infrared Plasmonic Resonances in Graphene. ACS Photonics, 2021, 8, 1277-1285.	6.6	3
6	Passive frequency conversion of ultraviolet images into the visible using perovskite nanocrystals. Journal of Optics (United Kingdom), 2021, 23, 054001.	2.2	4
7	Ultrathin Broadband Reflective Optical Limiter. Laser and Photonics Reviews, 2021, 15, 2100001.	8.7	20
8	Planck Spectroscopy. Laser and Photonics Reviews, 2021, 15, 2100121.	8.7	2
9	Fast recovery of ion-irradiation-induced defects in Ge ₂ Sb ₂ Te ₅ thin films at room temperature. Optical Materials Express, 2021, 11, 3535.	3.0	2
10	Engineering Optical Materials Using Focused Ion Beams. , 2021, , .		0
11	Infrared Polarizer Based on Direct Coupling to Surface Plasmon Polaritons. Nano Letters, 2020, 20, 8483-8486.	9.1	3
12	Precision Measurements of Temperatureâ€Dependent and Nonequilibrium Thermal Emitters. Laser and Photonics Reviews, 2020, 14, 1900443.	8.7	26
13	Depth Thermography: Noninvasive 3D Temperature Profiling Using Infrared Thermal Emission. ACS Photonics, 2020, 7, 853-860.	6.6	8
14	Nonlinear optical isolators based on thin-film vanadium dioxide and metallic frequency-selective surfaces. , 2020, , .		0
15	Optical power limiters based on frequency-selective surfaces and phase-transition materials., 2020,,.		O
16	On the Optical Properties of Thinâ€Film Vanadium Dioxide from the Visible to the Far Infrared. Annalen Der Physik, 2019, 531, 1900188.	2.4	135
17	Temperature-independent thermal radiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26402-26406.	7.1	69
18	Measuring Thermal Emission Near Room Temperature Using Fourier-Transform Infrared Spectroscopy. Physical Review Applied, 2019, 11, .	3.8	29

#	Article	IF	CITATION
19	Flat Optical and Plasmonic Devices Using Areaâ€Selective Ionâ€Beam Doping of Silicon. Advanced Optical Materials, 2018, 6, 1701027.	7.3	12
20	Embedded Optics: Flat Optical and Plasmonic Devices Using Areaâ€Selective Ionâ€Beam Doping of Silicon (Advanced Optical Materials 5/2018). Advanced Optical Materials, 2018, 6, 1870019.	7.3	1
21	Monolithic Doped-Semiconductor Platform for Optical Devices in the Infrared., 2018, , .		0
22	Mid-infrared Optics Using Dielectrics with Refractive Indices Below Unity. Physical Review Applied, 2018, 10, .	3.8	15
23	Design considerations for the enhancement of human color vision by breaking binocular redundancy. Scientific Reports, 2018, 8, 11971.	3.3	8
24	Limiting Optical Diodes Enabled by the Phase Transition of Vanadium Dioxide. ACS Photonics, 2018, 5, 2688-2692.	6.6	43
25	Evolution of Metallicity in Vanadium Dioxide by Creation of Oxygen Vacancies. Physical Review Applied, 2017, 7, .	3.8	88
26	Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers. Physical Review Applied, 2017, 8, .	3.8	88