
Kui Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374417/publications.pdf Version: 2024-02-01

KIII SHEN

#	Article	IF	CITATIONS
1	Novel fusiform core-shell-MOF derived intact metal@carbon composite: An efficient cathode catalyst for aqueous and solid-state Zn-air batteries. Journal of Energy Chemistry, 2022, 64, 385-394.	7.1	50
2	Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Applied Catalysis B: Environmental, 2022, 307, 121163.	10.8	28
3	Ultrathin Nanosheet Assembled Multishelled Superstructures for Photocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 4517-4527.	7.3	49
4	Scalable synthesis of multi-shelled hollow N-doped carbon nanosheet arrays with confined Co/CoP heterostructures from MOFs for pH-universal hydrogen evolution reaction. Science China Chemistry, 2022, 65, 619-629.	4.2	26
5	Mainâ€Group Metal Singleâ€Atomic Regulators in Dualâ€Metal Catalysts for Enhanced Electrochemical CO ₂ Reduction. Small, 2022, 18, e2201391.	5.2	39
6	Growth Pattern Control and Nanoarchitecture Engineering of Metal–Organic Framework Single Crystals by Confined Space Synthesis. ACS Central Science, 2022, 8, 718-728.	5.3	30
7	N-doped nanocarbon embedded in hierarchically porous metal-organic frameworks for highly efficient CO2 fixation. Science China Chemistry, 2022, 65, 1411-1419.	4.2	15
8	Controllable Synthesis of Ultrathin Defectâ€Rich LDH Nanoarrays Coupled with MOFâ€Derived Coâ€NC Microarrays for Efficient Overall Water Splitting. Small, 2022, 18, .	5.2	54
9	Hierarchically porous Fe,N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media. Nanoscale, 2021, 13, 10500-10508.	2.8	28
10	Multienzymeâ€Mimic Ultrafine Alloyed Nanoparticles in Metal Organic Frameworks for Enhanced Chemodynamic Therapy. Small, 2021, 17, e2005865.	5.2	74
11	Ordered Macroporous Carbonous Frameworks Implanted with CdS Quantum Dots for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2102690.	11.1	164
12	Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation. Applied Catalysis B: Environmental, 2021, 292, 120174.	10.8	64
13	Facile Synthesis of Boron and Nitrogen Dual-Doped Hollow Mesoporous Carbons for Efficient Reduction of 4-Nitrophenol. ACS Applied Materials & Interfaces, 2021, 13, 42598-42604.	4.0	22
14	MOF-Assisted Synthesis of Highly Mesoporous Cr ₂ O ₃ /SiO ₂ Nanohybrids for Efficient Lewis-Acid-Catalyzed Reactions. ACS Applied Materials & Interfaces, 2020, 12, 48691-48699.	4.0	14
15	Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nature Communications, 2020, 11, 2692.	5.8	82
16	Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts. ACS Catalysis, 2020, 10, 6579-6586.	5.5	240
17	Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties. ACS Nano, 2019, 13, 7800-7810.	7.3	143
18	MOF-Derived Isolated Fe Atoms Implanted in N-Doped 3D Hierarchical Carbon as an Efficient ORR Electrocatalyst in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2019, 11, 25976-25985.	4.0	196

Kui Shen

#	Article	IF	CITATIONS
19	General Immobilization of Ultrafine Alloyed Nanoparticles within Metal–Organic Frameworks with High Loadings for Advanced Synergetic Catalysis. ACS Central Science, 2019, 5, 176-185.	5.3	75
20	Phase-controllable synthesis of MOF-templated maghemite–carbonaceous composites for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 3571-3582.	5.2	42
21	Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359, 206-210.	6.0	836
22	Nanoreactor of MOF-Derived Yolk–Shell Co@C–N: Precisely Controllable Structure and Enhanced Catalytic Activity. ACS Catalysis, 2018, 8, 1417-1426.	5.5	279
23	A high-valent di-μ-oxo dimanganese complex covalently anchored in a metal–organic framework as a highly efficient and recoverable water oxidation catalyst. Chemical Communications, 2018, 54, 4188-4191.	2.2	9
24	Solvent-Driven Selectivity Control to Either Anilines or Dicyclohexylamines in Hydrogenation of Nitroarenes over a Bifunctional Pd/MIL-101 Catalyst. ACS Catalysis, 2018, 8, 10641-10648.	5.5	51
25	Encapsulation of C–N-decorated metal sub-nanoclusters/single atoms into a metal–organic framework for highly efficient catalysis. Chemical Science, 2018, 9, 8962-8968.	3.7	27
26	Selfâ€Templated Formation of Pt@ZIFâ€8/SiO ₂ Composite with 3Dâ€Ordered Macropores and Sizeâ€Selective Catalytic Properties. Small Methods, 2018, 2, 1800219.	4.6	34
27	Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with "one stone―as Z-scheme photocatalysts for highly efficient hydrogen production. Journal of Materials Chemistry A, 2018, 6, 19631-19642.	5.2	106
28	Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR. ACS Catalysis, 2018, 8, 7879-7888.	5.5	394
29	Hollow-ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. Journal of Materials Chemistry A, 2017, 5, 9937-9945.	5.2	143
30	Greening the Processes of Metal–Organic Framework Synthesis and their Use in Sustainable Catalysis. ChemSusChem, 2017, 10, 3165-3187.	3.6	132
31	Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts. Chemical Engineering Science, 2017, 166, 66-76.	1.9	90
32	Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: toward efficient and cost-effective catalysts for the MTA reaction. Catalysis Science and Technology, 2017, 7, 5143-5153.	2.1	26
33	Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. Chemical Engineering Journal, 2017, 330, 736-745.	6.6	97
34	Bifunctional N-Doped Co@C Catalysts for Base-Free Transfer Hydrogenations of Nitriles: Controllable Selectivity to Primary Amines vs Imines. ACS Catalysis, 2017, 7, 275-284.	5.5	151
35	Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis, 2016, 6, 5887-5903.	5.5	1,077
36	Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: highly active catalysts for hydrogenation reactions. Journal of Materials Chemistry A, 2016, 4, 10254-10262.	5.2	127

Kui Shen

#	Article	IF	CITATIONS
37	Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chemical Communications, 2016, 52, 2011-2014.	2.2	77
38	MOFs-Templated Co@Pd Core–Shell NPs Embedded in N-Doped Carbon Matrix with Superior Hydrogenation Activities. ACS Catalysis, 2015, 5, 5264-5271.	5.5	198
39	Oneâ€pot Synthesis of Ordered Mesoporous NiCeAl Oxide Catalysts and a Study of Their Performance in Methane Dry Reforming. ChemCatChem, 2014, 6, 1470-1480.	1.8	38
40	Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1,2,4-trimethylbenzene. Journal of Materials Chemistry A, 2014, 2, 19797-19808.	5.2	76
41	Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction. Catalysis Science and Technology, 2014, 4, 3840-3844.	2.1	72
42	Preparation and characterization of a plasma treated NiMgSBA-15 catalyst for methane reforming with CO2 to produce syngas. Catalysis Science and Technology, 2013, 3, 2278.	2.1	94
43	Direct synthesis of c-axis oriented ZSM-5 nanoneedles from acid-treated kaolin clay. Journal of Materials Chemistry A, 2013, 1, 3272.	5.2	53
44	Fabrication of <i>c-</i> Axis Oriented ZSM-5 Hollow Fibers Based on an in Situ Solid–Solid Transformation Mechanism. Journal of the American Chemical Society, 2013, 135, 15322-15325.	6.6	110