Ling-Qiao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374415/publications.pdf Version: 2024-02-01

μης-Οιλο Ημλης

#	Article	IF	CITATIONS
1	Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components. Insect Biochemistry and Molecular Biology, 2012, 42, 708-716.	2.7	85
2	A gustatory receptor tuned to d-fructose in antennal sensilla chaetica of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2015, 60, 39-46.	2.7	82
3	Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpa species. Insect Biochemistry and Molecular Biology, 2014, 48, 63-74.	2.7	74
4	Functional validation of the carbon dioxide receptor in labial palps of Helicoverpa armigera moths. Insect Biochemistry and Molecular Biology, 2016, 73, 12-19.	2.7	73
5	Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. International Journal of Biological Sciences, 2016, 12, 1394-1404.	6.4	72
6	Unique function of a chemosensory protein in the proboscis of two <i>Helicoverpa</i> species. Journal of Experimental Biology, 2014, 217, 1821-6.	1.7	67
7	Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. ELife, 2017, 6, .	6.0	63
8	Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochemistry and Molecular Biology, 2017, 84, 48-62.	2.7	52
9	Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species. Frontiers in Behavioral Neuroscience, 2015, 9, 206.	2.0	51
10	A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles. ELife, 2020, 9, .	6.0	43
11	Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta. Scientific Reports, 2016, 6, 22998.	3.3	38
12	An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera:) Tj ETQq0 0 C) rgBT/Ove	erlo <u>ç</u> g 10 Tf 5
13	Electrophysiological and behavioral responses of Helicoverpa assulta (Lepidoptera: Noctuidae) to tobacco volatiles. Arthropod-Plant Interactions, 2012, 6, 375-384.	1.1	30
14	Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genetics, 2021, 17, e1009527.	3.5	29
15	Dissecting sex pheromone communication of Mythimna separata (Walker) in North China from receptor molecules and antennal lobes to behavior. Insect Biochemistry and Molecular Biology, 2019, 111, 103176.	2.7	26
16	A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae). ELife, 2020, 9, .	6.0	25

17	The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker. Insect Biochemistry and Molecular Biology, 2020, 118, 103312.	2.7	24

18Identification and testing of oviposition attractant chemical compounds for Musca domestica.3.32218Scientific Reports, 2016, 6, 33017.

LING-QIAO HUANG

#	Article	IF	CITATIONS
19	Expressional divergences of two desaturase genes determine the opposite ratios of two sex pheromone components in Helicoverpa armigera and Helicoverpa assulta. Insect Biochemistry and Molecular Biology, 2017, 90, 90-100.	2.7	20
20	Contribution of odorant binding proteins to olfactory detection of (Z)-11-hexadecenal in Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2021, 131, 103554.	2.7	16
21	Functional analysis of pheromone receptor repertoire in the fall armyworm, <i>Spodoptera frugiperda</i> . Pest Management Science, 2022, 78, 2052-2064.	3.4	16
22	Olfactory coding of intra- and interspecific pheromonal messages by the male Mythimna separata in North China. Insect Biochemistry and Molecular Biology, 2020, 125, 103439.	2.7	14
23	Host preference and suitability in the endoparasitoid <i>Campoletis chlorideae</i> is associated with its ability to suppress host immune responses. Ecological Entomology, 2013, 38, 173-182.	2.2	13
24	The cotton bollworm endoparasitoid Campoletis chlorideae is attracted by cis-jasmone or cis-3-hexenyl acetate but not by their mixtures. Arthropod-Plant Interactions, 2020, 14, 169-179.	1.1	13
25	Differential immunosuppression by Campoletis chlorideae eggs and ichnovirus in larvae of Helicoverpa armigera and Spodoptera exigua. Journal of Invertebrate Pathology, 2015, 130, 88-96.	3.2	9
26	Comparison of functions of pheromone receptor repertoires in Helicoverpa armigera and Helicoverpa assulta using a Drosophila expression system. Insect Biochemistry and Molecular Biology, 2022, 141, 103702.	2.7	9
27	The Inheritance of the Pheromone Sensory System in Two Helicoverpa Species: Dominance of H. armigera and Possible Introgression from H. assulta. Frontiers in Cellular Neuroscience, 2016, 10, 302.	3.7	6