Antonio D Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Critical Reviews in Biotechnology, 2015, 35, 342-354.	5.1	151
2	Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresource Technology, 2012, 106, 101-109.	4.8	89
3	Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review. Fermentation, 2017, 3, 17.	1.4	85
4	Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes, 2021, 9, 206.	1.3	83
5	Laccases as versatile enzymes: from industrial uses to novel applications. Journal of Chemical Technology and Biotechnology, 2020, 95, 481-494.	1.6	71
6	Improving the fermentation performance of <i>saccharomyces cerevisiae</i> by laccase during ethanol production from steamâ€exploded wheat straw at highâ€substrate loadings. Biotechnology Progress, 2013, 29, 74-82.	1.3	61
7	Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresource Technology, 2013, 135, 239-245.	4.8	61
8	Process Strategies for the Transition of 1G to Advanced Bioethanol Production. Processes, 2020, 8, 1310.	1.3	55
9	Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Applied Microbiology and Biotechnology, 2019, 103, 1405-1416.	1.7	49
10	A Sequential Steam Explosion and Reactive Extrusion Pretreatment for Lignocellulosic Biomass Conversion within a Fermentation-Based Biorefinery Perspective. Fermentation, 2017, 3, 15.	1.4	48
11	Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresource Technology, 2015, 175, 209-215.	4.8	47
12	In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresource Technology, 2013, 143, 337-343.	4.8	43
13	A Bacterial Laccase for Enhancing Saccharification and Ethanol Fermentation of Steam-Pretreated Biomass. Fermentation, 2016, 2, 11.	1.4	36
14	Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies, 2021, 14, 2742.	1.6	36
15	Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces marxianus—Effects of steam pretreatment conditions, process configurations and substrate loadings. Biochemical Engineering Journal, 2013, 79, 94-103.	1.8	34
16	Fermentation strategies for the efficient use of olive tree pruning biomass from a flexible biorefinery approach. Fuel, 2020, 277, 118171.	3.4	33
17	Exploring laccase and mediators behavior during saccharification and fermentation of steamâ€exploded wheat straw for bioethanol production. Journal of Chemical Technology and Biotechnology, 2016, 91, 1816-1825.	1.6	32
18	Sequential bioethanol and methane production from municipal solid waste: An integrated biorefinery strategy towards cost-effectiveness. Chemical Engineering Research and Design, 2021, 146, 424-431.	2.7	30

#	Article	IF	CITATIONS
19	Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. Biotechnology for Biofuels, 2013, 6, 160.	6.2	28
20	Designing an olive tree pruning biorefinery for the production of bioethanol, xylitol and antioxidants: a techno-economic assessment. Holzforschung, 2018, 73, 15-23.	0.9	25
21	Production of Ethanol from Lignocellulosic Biomass. Biofuels and Biorefineries, 2017, , 375-410.	0.5	20
22	Insoluble solids at high concentrations repress yeast's response against stress and increase intracellular ROS levels. Scientific Reports, 2019, 9, 12236.	1.6	20
23	Src family tyrosine kinase regulates acrosome reaction but not motility in porcine spermatozoa. Reproduction, 2012, 144, 67-75.	1.1	18
24	Pretreatment Technologies for Lignocellulosic Biomass Deconstruction Within a Biorefinery Perspective. , 2019, , 379-399.		16
25	Genomic and transcriptomic analysis of Candida intermedia reveals the genetic determinants for its xylose-converting capacity. Biotechnology for Biofuels, 2020, 13, 48.	6.2	15
26	Integrated innovative biorefinery for the transformation of municipal solid waste into biobased products. , 2020, , 41-80.		11
27	Pretreatment of Lignocellulosic Feedstocks. , 2017, , 31-52.		11
28	Valorization of Greenhouse Horticulture Waste from a Biorefinery Perspective. Foods, 2021, 10, 814.	1.9	10
29	Complete Genome Sequences of the Xylose-Fermenting Candida intermedia Strains CBS 141442 and PYCC 4715. Genome Announcements, 2017, 5, .	0.8	8
30	Starch Biomass for Biofuels, Biomaterials, and Chemicals. , 2018, , 69-94.		8
31	Biofuels Production and Processing Technology. , 0, , .		8
32	Overview of bio-based industries. , 2020, , 1-40.		6
33	Biorefineries for the valorization of food processing waste. , 2020, , 155-190.		6
34	Candida intermedia CBS 141442: A Novel Glucose/Xylose Co-Fermenting Isolate for Lignocellulosic Bioethanol Production. Energies, 2020, 13, 5363.	1.6	4
35	Insights into cell robustness against lignocellulosic inhibitors and insoluble solids in bioethanol production processes. Scientific Reports, 2022, 12, 557.	1.6	4
36	Evaluation and Identification of Key Economic Bottlenecks for Cost-Effective Microbial Oil Production from Fruit and Vegetable Residues. Fermentation, 2022, 8, 334.	1.4	3