Fang-Chung Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4373912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale, 2022, 14, 4042-4064.	5.6	14
2	p-doping the interfacial layers with tetrakis(pentafluorophenyl)borate improves the power conversion efficiencies in single-crystal perovskite solar cells. Surfaces and Interfaces, 2022, 30, 101858.	3.0	2
3	Polymer-capped copper nanoparticles trigger plasmonic field for improving performance of perovskite solar cells. Synthetic Metals, 2021, 273, 116675.	3.9	4
4	Localized surface plasmon resonance of Au–Cu alloy nanoparticles enhances the performance of polymer photovoltaic devices for outdoor and indoor applications. Optical Materials Express, 2021, 11, 1037.	3.0	6
5	Localized surface plasmon resonance of copper nanoparticles improves the performance of quasi-two-dimensional perovskite light-emitting diodes. Dyes and Pigments, 2021, 188, 109204.	3.7	18
6	Position Effects of Metal Nanoparticles on the Performance of Perovskite Light-Emitting Diodes. Nanomaterials, 2021, 11, 993.	4.1	3
7	Nanogold-Carried Graphene Oxide: Anti-Inflammation and Increased Differentiation Capacity of Mesenchymal Stem Cells. Nanomaterials, 2021, 11, 2046.	4.1	15
8	Ternary polymer solar cells based on wide bandgap and narrow bandgap non-fullerene acceptors with an efficiency of 16.40 % and a low energy loss of 0.53ÂeV. Materials Today Energy, 2021, 21, 100843.	4.7	4
9	Prediction of non-radiative voltage losses in organic solar cells using machine learning. Solar Energy, 2021, 228, 175-186.	6.1	13
10	Mn-Doped Organic–Inorganic Perovskite Nanocrystals for a Flexible Luminescent Solar Concentrator. ACS Applied Energy Materials, 2021, 4, 10565-10573.	5.1	19
11	Interfacial plasmonic effects of gold nanoparticle-decorated graphene oxides on the performance of perovskite photovoltaic devices. Solar Energy, 2020, 211, 822-830.	6.1	20
12	Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications. Applied Physics Letters, 2020, 116, .	3.3	34
13	Accumulated plasmonic effects of gold nanoparticleâ~'decorated PEGylated graphene oxides in organic light-emitting diodes. Dyes and Pigments, 2020, 180, 108412.	3.7	9
14	Bandgap Engineering Enhances the Performance of Mixed ation Perovskite Materials for Indoor Photovoltaic Applications. Advanced Energy Materials, 2019, 9, 1901863.	19.5	78
15	Photovoltaics: Bandgap Engineering Enhances the Performance of Mixedâ€Cation Perovskite Materials for Indoor Photovoltaic Applications (Adv. Energy Mater. 37/2019). Advanced Energy Materials, 2019, 9, 1970143.	19.5	2
16	Virtual Screening of Conjugated Polymers for Organic Photovoltaic Devices Using Support Vector Machines and Ensemble Learning. International Journal of Polymer Science, 2019, 2019, 1-7.	2.7	6
17	Differential Spaceâ€Limited Crystallization of Mixedâ€Cation Lead Iodide Singleâ€Crystal Microâ€Plates Enhances the Performance of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900130.	5.8	12
18	Flexible Organometal–Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano, 2019, 13, 5421-5429.	14.6	84

#	Article	IF	CITATIONS
19	Bidentate chelating ligands as effective passivating materials for perovskite light-emitting diodes. Physical Chemistry Chemical Physics, 2019, 21, 7867-7873.	2.8	17
20	Emerging Organic and Organic/Inorganic Hybrid Photovoltaic Devices for Specialty Applications: Lowâ€Levelâ€Lighting Energy Conversion and Biomedical Treatment. Advanced Optical Materials, 2019, 7, 1800662.	7.3	69
21	Plasmonic-Enhanced Organic Photovoltaic Devices for Low-Power Light Applications. IEEE Journal of Photovoltaics, 2018, 8, 752-756.	2.5	39
22	New iridium-containing conjugated polymers for polymer solar cell applications. New Journal of Chemistry, 2018, 42, 17296-17302.	2.8	9
23	Seeded Spaceâ€Limited Crystallization of CH ₃ NH ₃ PbI ₃ Singleâ€Crystal Plates for Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700655.	5.1	43
24	Synthesis, characterization and photovoltaic properties of new iridium-containing conjugated polymers. AIP Conference Proceedings, 2018, , .	0.4	0
25	Photoexfoliation of two-dimensional materials through continuous UV irradiation. Nanotechnology, 2017, 28, 125604.	2.6	6
26	Toward Highâ€Performance Polymer Photovoltaic Devices for Lowâ€Power Indoor Applications. Solar Rrl, 2017, 1, 1700174.	5.8	73
27	Plasmonic Effects on Bulk Heterojunction Polymer Solar Cells: A Transient Photovoltage and Differential Charging Study. Science of Advanced Materials, 2017, 9, 1435-1439.	0.7	5
28	New alternating D–A ₁ –D–A ₂ copolymer containing two electronâ€deficient moieties based on benzothiadiazole and 9â€{2â€Octyldodecyl)â€8 <i>H</i> â€pyrrolo[3,4â€ <i>b</i>]bisthieno[2,3â€ <i>f</i> ;2'â€ <i>h</i>]quinoxaline for efficient polymer solar cells. Journal of Polymer Science Part A, 2016, 54, 155-168.	â€ 8 ;10(9<	i>Ħ)â€di
29	Synthesis of alternating D–A1–D–A2 terpolymers comprising two electron-deficient moieties, quinoxaline and benzothiadiazole units for photovoltaic applications. Polymer Chemistry, 2016, 7, 4025-4035.	3.9	11
30	Novel regular D–A-conjugated polymers based on 2,6-bis(6-fluoro-2-hexyl-2H-benzotriazol-4-yl)-4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-bâ€2]dithiophene derivatives: Synthesis, optoelectronic, and electrochemical properties. Doklady Chemistry, 2016, 470, 274-278.	0.9	2
31	Controllable lasing performance in solution-processed organic–inorganic hybrid perovskites. Nanoscale, 2016, 8, 18483-18488.	5.6	26
32	Symmetrical and unsymmetrical triphenylamine based diketopyrrolopyrroles and their use as donors for solution processed bulk heterojunction organic solar cells. RSC Advances, 2016, 6, 99685-99694.	3.6	17
33	Plasmonic effects of amphiphilic gold nanoparticles in polymer optoelectronic devices. , 2016, , .		0
34	Cross-Linkable Hole-Transport Materials Improve the Device Performance of Perovskite Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 27006-27011.	8.0	41
35	Localized surface plasmon for enhanced lasing performance in solution-processed perovskites. Optics Express, 2016, 24, 20696.	3.4	29
36	New D-A1–D-A2-Type Regular Terpolymers Containing Benzothiadiazole and Benzotrithiophene Acceptor Units for Photovoltaic Application. ACS Applied Materials & Interfaces, 2016, 8, 32998-33009.	8.0	18

#	Article	IF	CITATIONS
37	Small molecule based N-phenyl carbazole substituted diketopyrrolopyrroles as donors for solution-processed bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 22999-23005.	2.8	20
38	Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth. ACS Applied Materials & Interfaces, 2016, 8, 9275-9284.	8.0	56
39	Enhanced Lasing Performance in Solution-processed Lead Halide Perovskites Covered with PMMA and Ag. , 2016, , .		1
40	A New D-A conjugated polymer P(PTQD-BDT) with PTQD acceptor and BDT donor units for BHJ polymer solar cells application. Journal of Polymer Science Part A, 2015, 53, 2390-2398.	2.3	10
41	Metal Nanoparticle-Decorated Two-Dimensional Molybdenum Sulfide for Plasmonic-Enhanced Polymer Photovoltaic Devices. Materials, 2015, 8, 5414-5425.	2.9	24
42	Two new D–A conjugated polymers P(PTQD-Th) and P(PTQD-2Th) with same 9-(2-octyldodecyl)-8 H -pyrrolo[3,4- b]bisthieno[2,3- f :3′,2′- h]quinoxaline-8,10(9 H)-dione acceptor and different donor units for BHJ polymer solar cells application. Organic Electronics, 2015, 24, 137-146.	2.6	6
43	Synthesis and characterization of π-conjugated copolymers with thieno-imidazole units in the main chain: application for bulk heterojunction polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 7888-7897.	2.8	6
44	Efficient and stable polymer solar cells prepared using plasmonic graphene oxides as anode buffers. Semiconductor Science and Technology, 2015, 30, 085013.	2.0	2
45	Synthesis and characterization of two new benzothiadiazole- andÂfused bithiophene based low band-gap D–A copolymers: Application as donor bulk heterojunction polymer solar cells. Polymer, 2015, 65, 193-201.	3.8	16
46	Synergistic Plasmonic Effects of Metal Nanoparticle–Decorated PEGylated Graphene Oxides in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 7397-7405.	8.0	58
47	Flexible luminescent waveguiding photovoltaics exhibiting strong scattering effects from the dye aggregation. Nano Energy, 2015, 15, 729-736.	16.0	23
48	Surface Plasmonic Effects of Nanostructures on the Performance of Polymer Solar Cells. Topics in Applied Physics, 2015, , 299-313.	0.8	0
49	Green synthesis of gold nanoparticle–decorated graphene oxides that enhance the photocurrent in polymer solar cells. Materials Research Society Symposia Proceedings, 2014, 1668, 23.	0.1	0
50	Gold Nanoparticle-Graphene Oxide Nanocomposites That Enhance the Device Performance of Polymer Solar Cells. Journal of Nanomaterials, 2014, 2014, 1-12.	2.7	8
51	New donor-acceptor benzotrithiophene-containing conjugated polymers for solar cells. AIP Conference Proceedings, 2014, , .	0.4	2
52	Lasing behaviors upon phase transition in solution-processed perovskite thin films. Applied Physics Letters, 2014, 105, .	3.3	59
53	Reduced optical loss in mechanically stacked multi-junction organic solar cells exhibiting complementary absorptions. Optics Express, 2014, 22, A481.	3.4	5
54	Organic solar cells comprising multiple-device stacked structures exhibiting complementary absorption behavior. Solar Energy Materials and Solar Cells, 2014, 120, 724-727.	6.2	7

#	Article	IF	CITATIONS
55	Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale, 2014, 6, 1573-1579.	5.6	103
56	Tunable microcavities in organic light-emitting diodes by way of low-refractive-index polymer doping. Organic Electronics, 2014, 15, 3648-3653.	2.6	1
57	Efficiency improvement of organic bifunctional devices by applying omnidirectional antireflection nanopillars. RSC Advances, 2014, 4, 9588.	3.6	5
58	Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444.	5.6	150
59	High-Performance Bulk-Heterojunction Polymer Solar Cells. Green Energy and Technology, 2014, , 167-187.	0.6	0
60	High-Performance Flexible Waveguiding Photovoltaics. Scientific Reports, 2013, 3, 2244.	3.3	33
61	New conjugated electroluminescent triphenylamine-containing polymers with side-chain pyridin-2-ylimidazo[1,5-a]pyridine groups for polymer light-emitting diodes. Doklady Chemistry, 2013, 450, 165-172.	0.9	1
62	Solution-Processed Nanocomposites Containing Molybdenum Oxide and Gold Nanoparticles as Anode Buffer Layers in Plasmonic-Enhanced Organic Photovoltaic Devices. ACS Applied Materials & Interfaces, 2013, 5, 12419-12424.	8.0	43
63	Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.	19.5	141
64	P.116: Light Extraction Improvement of Flexible Topâ€Emitting Organic Lightâ€Emitting Devices by Using Nanoimprinted Periodically Corrugated Polycarbonate Substrate. Digest of Technical Papers SID International Symposium, 2013, 44, 1421-1423.	0.3	0
65	Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants. Applied Physics Letters, 2012, 100, 013309.	3.3	44
66	Self-Assembled Poly(ethylene glycol) Buffer Layers in Polymer Solar Cells: Toward Superior Stability and Efficiency. Journal of Physical Chemistry C, 2012, 116, 1354-1360.	3.1	42
67	Efficient organic optoelectronics with multilayer structures. Journal of Materials Chemistry, 2012, 22, 1364-1369.	6.7	4
68	Upconversion effects on the performance of near-infrared laser-driven polymer photovoltaic devices. Organic Electronics, 2012, 13, 2104-2108.	2.6	28
69	Improving the Light Trapping Efficiency of Plasmonic Polymer Solar Cells through Photon Management. Journal of Physical Chemistry C, 2012, 116, 20731-20737.	3.1	122
70	Pâ€122: Luminous and Conversion Efficiency Improvement in OLED/OPV Tandem Device with Omnidirectional Antireflection Nanopillars. Digest of Technical Papers SID International Symposium, 2012, 43, 1516-1519.	0.3	1
71	Highâ€performance solutionâ€processed amorphous ZrInZnO thinâ€film transistors. Physica Status Solidi - Rapid Research Letters, 2012, 6, 400-402.	2.4	3
72	Plasmonic-enhanced performance for polymer solar cells prepared with inverted structures. Applied Physics Letters, 2012, 101, 193902.	3.3	50

#	Article	IF	CITATIONS
73	Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. Journal of Materials Chemistry, 2012, 22, 5587.	6.7	73
74	Simple source/drain contact structure for solution-processed n-channel fullerene thin-film transistors. Organic Electronics, 2012, 13, 599-603.	2.6	4
75	Conjugated poly(fluoroalkyl 3-thienylacetate)s synthesized in supercritical carbon dioxide. Doklady Chemistry, 2012, 443, 101-106.	0.9	2
76	Stacked Structures for Assembling Multiple Organic Photovoltaic Devices. Applied Physics Express, 2012, 5, 072301.	2.4	3
77	Photoerasable Organic Nonvolatile Memory Devices Based on Hafnium Silicate Insulators. IEEE Electron Device Letters, 2011, 32, 1740-1742.	3.9	3
78	Flexible polymer solar cells prepared using hard stamps for the direct transfer printing of polymer blends with self-organized interfaces. Journal of Materials Chemistry, 2011, 21, 11378.	6.7	21
79	Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors. Semiconductor Science and Technology, 2011, 26, 034005.	2.0	42
80	Chemically Doped and Cross-linked Hole-Transporting Materials as an Efficient Anode Buffer Layer for Polymer Solar Cells. Chemistry of Materials, 2011, 23, 5006-5015.	6.7	73
81	High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 13247.	6.7	102
82	Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications, 2011, 47, 11026.	4.1	241
83	Facile synthesis of a 56ï€-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. Chemical Communications, 2011, 47, 10082.	4.1	89
84	1-(3-Methoxycarbonyl)propyl-2-selenyl-[6,6]-methanofullerene as a n-Type Material for Organic Solar Cells. Synthetic Metals, 2011, 161, 1264-1269.	3.9	8
85	Near-infrared laser-driven polymer photovoltaic devices and their biomedical applications. Energy and Environmental Science, 2011, 4, 3374.	30.8	37
86	Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano, 2011, 5, 959-967.	14.6	959
87	Molecular-weight-dependent nanoscale morphology in silole-containing cyclopentadithiophene polymer and fullerene derivative blends. Organic Electronics, 2011, 12, 1755-1762.	2.6	23
88	Suppression of phase separation through blending of electron transporting materials in polymer electrophosphorescent devices. Journal of Luminescence, 2011, 131, 565-569.	3.1	2
89	P-32: A New Driving Pixel Circuit to Alleviate AMOLED Degradation. Digest of Technical Papers SID International Symposium, 2010, 41, 1340.	0.3	2
90	Hybrid TiOx/fluoropolymer bi-layer dielectrics for low-voltage complementary inverters. Organic Electronics, 2010, 11, 154-158.	2.6	5

#	Article	IF	CITATIONS
91	Morphological study of P3HT:PCBM blend films prepared through solvent annealing for solar cell applications. Solar Energy Materials and Solar Cells, 2010, 94, 2426-2430.	6.2	119
92	Synthesis and characterization of well-dispersed multi-walled carbon nanotube/low-bandgap poly(3,4-alkoxythiophene) nanocomposites. Composites Science and Technology, 2010, 70, 1242-1248.	7.8	6
93	Light harvesting schemes for high-performance polymer solar cells. , 2010, , .		Ο
94	Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response. Applied Physics Letters, 2010, 97, 103301.	3.3	57
95	Morphological study on pentacene thin-film transistors: the influence of grain boundary on the electrical properties. Journal Physics D: Applied Physics, 2010, 43, 405103.	2.8	15
96	Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells. Energy and Environmental Science, 2010, 3, 654.	30.8	49
97	Spatial redistribution of the optical field intensity in inverted polymer solar cells. Applied Physics Letters, 2010, 96, 193304.	3.3	44
98	Construction and characteristics of tandem organic solar cells featuring small molecule-based films on polymer-based subcells. Journal Physics D: Applied Physics, 2010, 43, 025104.	2.8	18
99	Plasmonic-enhanced polymer photovoltaic devices incorporating Au nanoparticles. , 2010, , .		0
100	Highly-stable and efficient polymer solar cells incorporating nanoscale buffer layers induced by spontaneous vertical phase separation. , 2010, , .		0
101	Air Stable Ambipolar Organic Field-Effect Transistors and Complementary-Like Inverters Prepared with Surface-Modified Gate Dielectrics. Electrochemical and Solid-State Letters, 2009, 12, H252.	2.2	6
102	Flexible Fullerene Fieldâ€Effect Transistors Fabricated Through Solution Processing. Advanced Materials, 2009, 21, 4845-4849.	21.0	60
103	Synthesis and properties of new dialkoxyphenylene quinoxalineâ€based donorâ€acceptor conjugated polymers and their applications on thin film transistors and solar cells. Journal of Polymer Science Part A, 2009, 47, 973-985.	2.3	40
104	Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Applied Physics Letters, 2009, 95, .	3.3	272
105	Ring-Edged Bank Array Made by Inkjet Printing for Color Filters. Journal of Display Technology, 2009, 5, 162-165.	1.2	10
106	Using Ink-Jet Printing and Coffee Ring Effect to Fabricate Refractive Microlens Arrays. IEEE Photonics Technology Letters, 2009, 21, 648-650.	2.5	32
107	Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils. IEEE Electron Device Letters, 2009, 30, 727-729.	3.9	35
108	Nanoscale functional interlayers formed through spontaneous vertical phase separation in polymer photovoltaic devices. Journal of Materials Chemistry, 2009, 19, 6865.	6.7	73

#	Article	IF	CITATIONS
109	A single-substrate multicolor cholesteric liquid-crystal display prepared through ink-jet printing. Journal of the Society for Information Display, 2009, 17, 795.	2.1	2
110	Pâ€10: CMOSâ€Like Ambipolar Organic/Inorganic TFTs for AMLCD and AMOLED Applications. Digest of Technical Papers SID International Symposium, 2009, 40, 1113-1116.	0.3	2
111	Single-layer triplet white polymer light-emitting diodes incorporating polymer oxides: Effect of charge trapping at phosphorescent dopants. Applied Physics Letters, 2009, 94, 043306.	3.3	24
112	Polymer photovoltaic devices with highly transparent cathodes. Organic Electronics, 2008, 9, 1132-1135.	2.6	41
113	Cesium carbonate as a functional interlayer for polymer photovoltaic devices. Journal of Applied Physics, 2008, 103, .	2.5	104
114	Solvent mixtures for improving device efficiency of polymer photovoltaic devices. Applied Physics Letters, 2008, 92, 103316.	3.3	135
115	High-Performance Single-Layer Polymer Electrophosphorescent Devices with Polymer Oxides. Electrochemical and Solid-State Letters, 2008, 11, J50.	2.2	9
116	Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics. Applied Physics Letters, 2008, 93, 103310.	3.3	78
117	Submicron-scale manipulation of phase separation in organic solar cells. Applied Physics Letters, 2008, 92, 023307.	3.3	41
118	P-223: Enhanced Power Efficiency of Single-Layer White Triplet Polymer Light-Emitting Diodes by Blending with Polymer Oxides. Digest of Technical Papers SID International Symposium, 2008, 39, 2043.	0.3	0
119	31.3: The Fabrication of Single Substrate Multi-Color Cholesteric Liquid Crystal Display by Ink-Jet Printing. Digest of Technical Papers SID International Symposium, 2008, 39, 437.	0.3	3
120	Organic thin-film transistors with color filtering functional gate insulators. Applied Physics Letters, 2008, 93, 053305.	3.3	3
121	Transparent OTFTs with Color-Filtering Functional Gate Insulators. ECS Transactions, 2007, 8, 275-281.	0.5	0
122	Photocurrent Suppression of Transparent Organic Thin Film Transistors. Japanese Journal of Applied Physics, 2007, 46, L1197.	1.5	12
123	Copper phthalocyanine buffer layer to enhance the charge injection in organic thin-film transistors. Applied Physics Letters, 2007, 90, 073504.	3.3	55
124	Efficient Hole-Injection in Highly Transparent Organic Thin-Film Transistors. Electrochemical and Solid-State Letters, 2007, 10, H186.	2.2	19
125	Ring Edge in Film Morphology: Benefit or Obstacle for Ink Jet Fabrication of Organic Thin Film Transistors. Journal of Imaging Science and Technology, 2007, 51, 461.	0.5	0
126	P-156: Polymeric Electrophosphorescent Devices with Low Turn-on Voltages and High Power Conversion Efficiency by Blending with Poly(ethylene glycol). Digest of Technical Papers SID International Symposium, 2007, 38, 788-791.	0.3	1

#	Article	IF	CITATIONS
127	P-10: Transparent OTFTs with Color Filtering Functional Gate Insulators. Digest of Technical Papers SID International Symposium, 2007, 38, 206-209.	0.3	0
128	Modified buffer layers for polymer photovoltaic devices. Applied Physics Letters, 2007, 90, 063509.	3.3	146
129	Microwave Annealing of Polymer Photovoltaic Devices. Advanced Materials, 2007, 19, 3520-3523.	21.0	85
130	Organic thin-film transistors with reduced photosensitivity. Organic Electronics, 2007, 8, 767-772.	2.6	15
131	Self-Organization of Microlens Arrays Caused by the Spin-Coating-Assisted Hydrophobic Effect. IEEE Photonics Technology Letters, 2006, 18, 2454-2456.	2.5	6
132	P-195: Enhanced Light Out-Coupling Efficiency of OLEDs with Self-organized Microlens Arrays. Digest of Technical Papers SID International Symposium, 2006, 37, 961.	0.3	3
133	Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics. Organic Electronics, 2006, 7, 435-439.	2.6	67
134	Organic selective-area patterning method for microlens array fabrication. Microelectronic Engineering, 2006, 83, 1333-1335.	2.4	16
135	Enhanced Light Out-Coupling Efficiency of Organic Light-Emitting Diodes with Self-Organized Microlens Arrays. Japanese Journal of Applied Physics, 2006, 45, L1100-L1102.	1.5	18
136	High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices. Advanced Functional Materials, 2005, 15, 203-208.	14.9	835
137	Synthesis of Main-Chain Polyoxometalate-Containing Hybrid Polymers and Their Applications in Photovoltaic Cells. Chemistry of Materials, 2005, 17, 402-408.	6.7	120
138	Enhanced efficiency of plastic photovoltaic devices by blending with ionic solid electrolytes. Applied Physics Letters, 2004, 84, 3181-3183.	3.3	33
139	Organic thin-film transistors with nanocomposite dielectric gate insulator. Applied Physics Letters, 2004, 85, 3295-3297.	3.3	206
140	Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2681-2690.	2.1	131
141	Triplet exciton confinement in phosphorescent polymer light-emitting diodes. Applied Physics Letters, 2003, 82, 1006-1008.	3.3	128
142	Highly efficient polymer light-emitting devices using a phosphorescent sensitizer. Applied Physics Letters, 2002, 81, 1509-1511.	3.3	49
143	High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex. Applied Physics Letters, 2002, 80, 2308-2310.	3.3	220
144	Phosphorescent light-emitting electrochemical cell. Applied Physics Letters, 2002, 81, 4278-4280.	3.3	56

#	Article	IF	CITATIONS
145	Electrogenerated chemiluminescence of sterically hindered porphyrins in aqueous media. Journal of Electroanalytical Chemistry, 2001, 499, 17-23.	3.8	33
146	Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes. Applied Physics Letters, 2001, 79, 2088-2090.	3.3	111
147	Electrochemical characterization and electrocatalysis of high valent manganese meso-tetrakis(N-methyl-2-pyridyl)porphyrin. Journal of Electroanalytical Chemistry, 1999, 474, 52-59.	3.8	42
148	Asymmetrical Single Crystals Containing Tilted Ruddlesden–Popper Phases for Efficient Perovskite Solar Cells. Solar Rrl, 0, , 2200562.	5.8	2