Mats Olsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4373318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restoration of an inbred adder population. Nature, 1999, 402, 34-35.	13.7	501
2	Multiple paternity in reptiles: patterns and processes. Molecular Ecology, 2008, 17, 2566-2580.	2.0	291
3	Is sperm really so cheap? Costs of reproduction in male adders,Vipera berus. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 455-459.	1.2	277
4	Sperm selection by females. Nature, 1996, 383, 585-585.	13.7	258
5	Major histocompatibility complex and mate choice in sand lizards. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S254-6.	1.2	219
6	SEXUAL DIMORPHISM IN LIZARD BODY SHAPE: THE ROLES OF SEXUAL SELECTION AND FECUNDITY SELECTION. Evolution; International Journal of Organic Evolution, 2002, 56, 1538-1542.	1.1	182
7	Male preference for large females and assortative mating for body size in the sand lizard (Lacerta) Tj ETQq1 1 0.7	784314 rg 0.6	BT /Overlock 162
8	Nuptial coloration in the sand lizard, Lacerta agilis: an intra-sexually selected cue to fighting ability. Animal Behaviour, 1994, 48, 607-613.	0.8	158
9	Measuring telomere length and telomere dynamics in evolutionary biology and ecology. Methods in Ecology and Evolution, 2014, 5, 299-310.	2.2	158
10	Genetics and evolution of colour patterns in reptiles. Seminars in Cell and Developmental Biology, 2013, 24, 529-541.	2.3	155
11	High Prevalence of Hepatozoon Spp. (Apicomplexa, Hepatozoidae) Infection in Water Pythons (Liasis) Tj ETQq1	1 0,78431 0.3	.4 rgBT /Over 154
12	Contest success in relation to size and residency in male sand lizards, Lacerta agilis. Animal Behaviour, 1992, 44, 386-388.	0.8	136
13	Female choice on male quantitative traits in lizards — why is it so rare?. Behavioral Ecology and Sociobiology, 1995, 36, 179-184.	0.6	123
14	Testosterone, ticks and travels: a test of the immunocompetence-handicap hypothesis in free-ranging male sand lizards. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2339-2343.	1.2	121
15	Does reproductive success increase with age or with size in species with indeterminate growth? A case study using sand lizards (Lacerta agilis). Oecologia, 1996, 105, 175-178.	0.9	111
16	The Limits to Reproductive Output: Offspring Size Versus Number in the Sand Lizard (Lacerta agilis). American Naturalist, 1997, 149, 179-188.	1.0	110
17	Malformed offspring, sibling matings, and selection against inbreeding in the sand lizard (Lacerta) Tj ETQq 110.7	784314 rg 0.8	BT /Overlock 106
18	Prenatal exposure to testosterone increases ectoparasite susceptibility in the common lizard () Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 50 62

		WATS OLSS	JN	
#	Article		IF	CITATIONS
19	Effects of sex, body size, temperature, and location on the antipredator tactics of free gartersnakes (Thamnophis sirtalis, Colubridae). Behavioral Ecology, 2000, 11, 239-245	-ranging 5.	1.0	104
20				

#	Article	IF	CITATIONS
37	Giving offspring a head start in life: field and experimental evidence for selection on maternal basking behaviour in lizards. Journal of Evolutionary Biology, 2010, 23, 651-657.	0.8	67
38	Population size and genetic diversity in sand lizards (Lacerta agilis) and adders (Vipera berus). Biological Conservation, 2000, 94, 257-262.	1.9	63
39	IN HOT PURSUIT: FLUCTUATING MATING SYSTEM AND SEXUAL SELECTION IN SAND LIZARDS. Evolution; International Journal of Organic Evolution, 2011, 65, 574-583.	1.1	62
40	Mating system variation and morph fluctuations in a polymorphic lizard. Molecular Ecology, 2007, 16, 5307-5315.	2.0	61
41	Direct Exposure to Corticosterone During Embryonic Development Influences Behaviour in an Ovoviviparous Lizard. Ethology, 2006, 112, 390-397.	0.5	59
42	Carotenoid intake does not mediate a relationship between reactive oxygen species and bright colouration: experimental test in a lizard. Journal of Experimental Biology, 2008, 211, 1257-1261.	0.8	58
43	Old pythons stay fit; effects of haematozoan infections on life history traits of a large tropical predator. Oecologia, 2005, 142, 407-412.	0.9	57
44	Ownership influences the outcome of male-male contests in the scincid lizard, Niveoscincus microlepidotus. Behavioral Ecology, 2000, 11, 587-590.	1.0	56
45	Low genetic diversity threatens imminent extinction for the Hungarian meadow viper (Vipera ursinii) Tj ETQq1 1	0.784314 1.9	• rgBT /Overic
46	Female-biased natal and breeding dispersal in an alpine lizard, Niveoscincus microlepidotus. Biological Journal of the Linnean Society, 2003, 79, 277-283.	0.7	56
47	Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis,) Tj ETQq1 10.78	4314 rgBT 1.0	Oygrlock 10
48	Sperm competition in the sand lizard, Lacerta agilis. Animal Behaviour, 1994, 48, 193-200.	0.8	53
49	Males with high genetic similarity to females sire more offspring in sperm competition in Peron's tree frog <i>Litoria peronii</i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 971-978.	1.2	53
50	Sexual differences in telomere selection in the wild. Molecular Ecology, 2011, 20, 2085-2099.	2.0	52
51	Evolutionary ecology of telomeres: a review. Annals of the New York Academy of Sciences, 2018, 1422, 5-28.	1.8	51
52	Rewards of promiscuity. Nature, 1994, 372, 230-230.	13.7	50
53	Outbreeding depression in the common frog, Rana temporaria. Conservation Genetics, 2005, 6, 205-211.	0.8	49
54	Free radicals run in lizard families. Biology Letters, 2008, 4, 186-188.	1.0	49

#	Article	IF	CITATIONS
55	Chemosensory mate recognition may facilitate prolonged mate guarding by male snow skinks, Niveoscincus microlepidotus. Behavioral Ecology and Sociobiology, 1998, 43, 359-363.	0.6	48
56	Female choice on male quantitative traits in lizards ? why is it so rare?. Behavioral Ecology and Sociobiology, 1995, 36, 179-184.	0.6	48
57	Rival recognition affects male contest behavior in sand lizards (Lacerta agilis). Behavioral Ecology and Sociobiology, 1994, 35, 249-252.	0.6	47
58	Effects of long-term fox baiting on species composition and abundance in an Australian lizard community. Austral Ecology, 2005, 30, 899-905.	0.7	47
59	Offspring size and timing of hatching determine survival and reproductive output in a lizard. Oecologia, 2010, 162, 663-671.	0.9	47
60	Facultative sex allocation in snow skink lizards (Niveoscincus microlepidotus). Journal of Evolutionary Biology, 2001, 14, 120-128.	0.8	46
61	Afternoon T: Testosterone level is higher in red than yellow male polychromatic lizards. Physiology and Behavior, 2007, 91, 531-534.	1.0	46
62	Consequences of maternal yolk testosterone for offspring development and survival: experimental test in a lizard. Functional Ecology, 2007, 21, 544-551.	1.7	45
63	Nuptial coloration and predation risk in model sand lizards, Lacerta agilis. Animal Behaviour, 1993, 46, 410-412.	0.8	44
64	ADVANTAGES OF MULTIPLE MATINGS TO FEMALES: A TEST OF THE INFERTILITY HYPOTHESIS USING LIZARDS. Evolution; International Journal of Organic Evolution, 1997, 51, 1684-1688.	1.1	44
65	Effects of sperm storage and male colour on probability of paternity in a polychromatic lizard. Animal Behaviour, 2009, 77, 419-424.	0.8	44
66	No Interstitial Telomeres on Autosomes but Remarkable Amplification of Telomeric Repeats on the W Sex Chromosome in the Sand Lizard (Lacerta agilis). Journal of Heredity, 2015, 106, 753-757.	1.0	44
67	FECUNDITY AND MHC AFFECTS EJACULATION TACTICS AND PATERNITY BIAS IN SAND LIZARDS. Evolution; International Journal of Organic Evolution, 2004, 58, 906-909.	1.1	42
68	Costs of Mating with Infertile Males Selects for Late Emergence in Female Sand Lizards (Lacerta agilis) Tj ETQq0	0 0 rgBT /	Overlock 10 T
69	Plasticity in Frequency of Reproduction in an Alpine Lizard, Niveoscincus microlepidotus. Copeia, 1999, 1999, 794.	1.4	41
70	Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162146.	1.2	41
71	Conflicts between Courtship and Thermoregulation: The Thermal Ecology of Amorous Male Garter Snakes (Thamnophis sirtalis parietalis, Colubridae). Physiological and Biochemical Zoology, 2000, 73, 508-516.	0.6	40
72	Multiple copulations in natural populations of lizards: evidence for the fertility assurance	0.4	39

hypothesis. Behaviour, 2005, 142, 45-56.

#	Article	IF	CITATIONS
73	Proximate determinants of telomere length in sand lizards (<i>Lacerta agilis</i>). Biology Letters, 2010, 6, 651-653.	1.0	39
74	Offspring size-number strategies: experimental manipulation of offspring size in a viviparous lizard (Lacerta vivipara). Functional Ecology, 2002, 16, 135-140.	1.7	38
75	Population divergence of developmental thermal optima in Swedish common frogs,Rana temporaria. Journal of Evolutionary Biology, 2001, 14, 755-762.	0.8	37
76	MHC, health, color, and reproductive success in sand lizards. Behavioral Ecology and Sociobiology, 2005, 58, 289-294.	0.6	37
77	Why are sand lizard males (Lacerta agilis) not equally green?. Behavioral Ecology and Sociobiology, 1994, 35, 169-173.	0.6	36
78	PATERNAL GENOTYPE INFLUENCES INCUBATION PERIOD, OFFSPRING SIZE, AND OFFSPRING SHAPE IN AN OVIPAROUS REPTILE. Evolution; International Journal of Organic Evolution, 1996, 50, 1328-1333.	1.1	36
79	Microsatellites in the sand lizard (Lacerta agilis): description, variation, inheritance, and applicability. Biochemical Genetics, 1997, 35, 281-295.	0.8	36
80	TIMING OF PARTURITION AS A MATERNAL CARE TACTIC IN AN ALPINE LIZARD SPECIES. Evolution; International Journal of Organic Evolution, 1998, 52, 1861-1864.	1.1	36
81	'Voyeurism' prolongs copulation in the dragon lizard Ctenophorus fordi. Behavioral Ecology and Sociobiology, 2001, 50, 378-381.	0.6	36
82	Contest success and mate guarding in male sand lizards, Lacerta agilis. Animal Behaviour, 1993, 46, 408-409.	0.8	35
83	No female mate choice in Mallee dragon lizards, Ctenophorus fordi. Evolutionary Ecology, 2001, 15, 129-141.	0.5	35
84	Sons are made from old stores: sperm storage effects on sex ratio in a lizard. Biology Letters, 2007, 3, 491-493.	1.0	35
85	Telomere dynamics in a lizard with morphâ€specific reproductive investment and selfâ€maintenance. Ecology and Evolution, 2017, 7, 5163-5169.	0.8	35
86	Effects of early social isolation on the behaviour and performance of juvenile lizards, Chamaeleo calyptratus. Animal Behaviour, 2014, 88, 1-6.	0.8	34
87	Fit and fat from enlarged badges: a field experiment on male sand lizards. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S142-4.	1.2	33
88	Sex-specific SOD levels and DNA damage in painted dragon lizards (Ctenophorus pictus). Oecologia, 2012, 170, 917-924.	0.9	33
89	Trade-offs between offspring size and number in the lizard Lacerta vivipara: a comparison between field and laboratory conditions. Journal of Zoology, 2005, 265, 295-299.	0.8	32
90	Ageing and the cost of maintaining coloration in the Australian painted dragon. Biology Letters, 2016, 12, 20160077.	1.0	32

#	Article	IF	CITATIONS
91	Mate Guarding in Male Sand Lizards (Lacerta Agilis). Behaviour, 1996, 133, 367-386.	0.4	29
92	Consistent sex ratio bias of individual female dragon lizards. Biology Letters, 2006, 2, 569-572.	1.0	29
93	Aggression, but not testosterone, is associated to oxidative status in a free-living vertebrate. Behaviour, 2011, 148, 713-731.	0.4	29
94	Telomeric attrition with age and temperature in Eastern mosquitofish (Gambusia holbrooki). Die Naturwissenschaften, 2014, 101, 241-244.	0.6	29
95	Sperm choice by females. Trends in Ecology and Evolution, 1997, 12, 445-446.	4.2	28
96	Oxidative stress physiology in relation to life history traits of a freeâ€living vertebrate: the spotted snow skink, <i>Niveoscincus ocellatus</i> . Integrative Zoology, 2011, 6, 140-149.	1.3	28
97	Prenatal sex ratios influence sexual dimorphism in a reptile. The Journal of Experimental Zoology, 2003, 295A, 183-187.	1.4	27
98	Paternal alleles enhance female reproductive success in tropical pythons. Molecular Ecology, 2005, 14, 1783-1787.	2.0	27
99	Sperm competition in squamate reptiles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200079.	1.8	27
100	Sex-specific developmental plasticity in response to yolk corticosterone in an oviparous lizard. Journal of Experimental Biology, 2009, 212, 1087-1091.	0.8	26
101	Sex―And tissueâ€specific differences in telomere length in a reptile. Ecology and Evolution, 2019, 9, 6211-6219.	0.8	26
102	Advantages of Multiple Matings to Females: A Test of the Infertility Hypothesis Using Lizards. Evolution; International Journal of Organic Evolution, 1997, 51, 1684.	1.1	25
103	Sperm Choice and Sperm Competition: Suggestions for Field and Laboratory Studies. Oikos, 1999, 84, 172.	1.2	25
104	Between-year variation in determinants of offspring survival in the Sand Lizard, Lacerta agilis. Functional Ecology, 2001, 15, 443-450.	1.7	25
105	NO SEASONAL SEX-RATIO SHIFT DESPITE SEX-SPECIFIC FITNESS RETURNS OF HATCHING DATE IN A LIZARD WITH GENOTYPIC SEX DETERMINATION. Evolution; International Journal of Organic Evolution, 2006, 60, 2131-2136.	1.1	25
106	Variation in heritability of tadpole growth: an experimental analysis. Heredity, 2002, 88, 480-484.	1.2	24
107	Variation in levels of reactive oxygen species is explained by maternal identity, sex and body-size-corrected clutch size in a lizard. Die Naturwissenschaften, 2009, 96, 25-29.	0.6	24
108	A SIGNIFICANT COMPONENT OF AGEING (DNA DAMAGE) IS REFLECTED IN FADING BREEDING COLORS: AN EXPERIMENTAL TEST USING INNATE ANTIOXIDANT MIMETICS IN PAINTED DRAGON LIZARDS. Evolution; International Journal of Organic Evolution, 2012, 66, 2475-2483.	1.1	24

#	Article	IF	CITATIONS
109	How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Molecular Ecology, 2022, 31, 6040-6052.	2.0	24
110	Digit Ratio, Color Polymorphism and Egg Testosterone in the Australian Painted Dragon. PLoS ONE, 2011, 6, e16225.	1.1	24
111	Endless forms of sexual selection. PeerJ, 2019, 7, e7988.	0.9	24
112	Differential sex allocation in sand lizards: bright males induce daughter production in a species with heteromorphic sex chromosomes. Biology Letters, 2005, 1, 378-380.	1.0	23
113	Too big for his boots: Are social costs keeping conditionâ€dependent status signalling honest in an Australian lizard?. Austral Ecology, 2009, 34, 636-640.	0.7	23
114	Costs of reproduction in a lizard species: a comparison of observational and experimental data. Oikos, 2001, 93, 121-125.	1.2	22
115	TESTING THE QUALITY OF A CARRIER: A FIELD EXPERIMENT ON LIZARD SIGNALERS. Evolution; International Journal of Organic Evolution, 2009, 63, 695-701.	1.1	22
116	Timing of Parturition as a Maternal Care Tactic in an Alpine Lizard Species. Evolution; International Journal of Organic Evolution, 1998, 52, 1861.	1.1	21
117	Life in the land of the midnight sun: are northern lizards adapted to longer days?. Oikos, 2003, 101, 317-322.	1.2	21
118	THE ROLE OF HALDANE'S RULE IN SEX ALLOCATION. Evolution; International Journal of Organic Evolution, 2005, 59, 221-225.	1.1	21
119	Within-population variation in ejaculate characteristics in a prolonged breeder, Peron's tree frog, Litoria peronii. Die Naturwissenschaften, 2008, 95, 1055-1061.	0.6	21
120	Variety is the Spice of Life: Female Lizards Choose to Associate with Colour-Polymorphic Male Dyads. Ethology, 2008, 114, 231-237.	0.5	21
121	UV-Deprived Coloration Reduces Success in Mate Acquisition in Male Sand Lizards (Lacerta agilis). PLoS ONE, 2011, 6, e19360.	1.1	21
122	Sand lizard (Lacerta agilis) phenology in a warming world. BMC Evolutionary Biology, 2015, 15, 206.	3.2	21
123	Evolution in populations of Swedish sand lizards: genetic differentiation and loss of variability revealed by multilocus DNA fingerprinting. Journal of Evolutionary Biology, 1999, 12, 17-26.	0.8	20
124	Disentangling the complexities of vertebrate sex allocation: a role for squamate reptiles?. Oikos, 2007, 116, 1051-1057.	1.2	20
125	CLIMATE CHANGE, MULTIPLE PATERNITY AND OFFSPRING SURVIVAL IN LIZARDS. Evolution; International Journal of Organic Evolution, 2011, 65, 3323-3326.	1.1	20
126	Sperm Storage and Sperm Competition Across Ovarian Cycles in the Dragon Lizard, <i>Ctenophorus fordi</i> . Journal of Experimental Zoology, 2013, 319, 404-408.	1.2	19

#	Article	IF	CITATIONS
127	Selection and constraints on offspring sizeâ€number tradeâ€offs in sand lizards (<i>Lacerta agilis</i>). Journal of Evolutionary Biology, 2016, 29, 979-990.	0.8	19

128 Colonization, genetic diversity, and evolution in the Swedish sand lizard, Lacerta agilis (Reptilia,) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 70)

129	Longâ€ŧerm effects of superoxide and DNA repair on lizard telomeres. Molecular Ecology, 2018, 27, 5154-5164.	2.0	18
130	Can female adders multiply?. Nature, 1994, 369, 528-528.	13.7	17
131	Haldane rules: costs of outbreeding at production of daughters in sand lizards. Ecology Letters, 2004, 7, 924-928.	3.0	17
132	Corticosterone: a costly mediator of signal honesty in sand lizards. Ecology and Evolution, 2016, 6, 7451-7461.	0.8	17
133	Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Molecular Ecology, 2022, 31, 6069-6086.	2.0	17
134	Oxidant Trade-Offs in Immunity: An Experimental Test in a Lizard. PLoS ONE, 2015, 10, e0126155.	1.1	17
135	Paternal Genotype Influences Incubation Period, Offspring Size, and Offspring Shape in an Oviparous Reptile. Evolution; International Journal of Organic Evolution, 1996, 50, 1328.	1.1	16
136	Consistent male–male paternity differences across female genotypes. Biology Letters, 2009, 5, 232-234.	1.0	16
137	Sexual coloration and sperm performance in the Australian painted dragon lizard, <i>Ctenophorus pictus</i> . Journal of Evolutionary Biology, 2017, 30, 1303-1312.	0.8	16
138	Morphâ€specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 433-443.	0.9	16
139	The role of oxidative stress in postcopulatory selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200065.	1.8	16
140	Lizards as a plant's 'hired help': letting pollinators in and seeds out. Biological Journal of the Linnean Society, 2000, 71, 191-202.	0.7	15
141	PRIMER NOTE: Microsatellite loci for Australian agamid lizards. Molecular Ecology Notes, 2006, 7, 528-531.	1.7	15
142	A genetic component of resistance to fungal infection in frog embryos. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1393-1396.	1.2	15
143	Basal superoxide as a sex-specific immune constraint. Biology Letters, 2011, 7, 906-908.	1.0	15
144	Contrasting seasonal patterns of telomere dynamics in response to environmental conditions in the ectothermic sand lizard, Lacerta agilis. Scientific Reports, 2020, 10, 182.	1.6	15

#	Article	IF	CITATIONS
145	Intraspecific variation in resistance of frog eggs to fungal infection. Evolutionary Ecology, 2008, 22, 193-201.	0.5	14
146	MHC diversity and female age underpin reproductive success in an Australian icon; the Tasmanian Devil. Scientific Reports, 2018, 8, 4175.	1.6	14
147	Female Choice for Males with Greater Fertilization Success in the Swedish Moor Frog, Rana arvalis. PLoS ONE, 2010, 5, e13634.	1.1	14
148	Effects of pH and aluminium on embryonic and early larval stages of Swedish brown frogs Rana arvalis, R. temporaria and R. dalmatina. Ecography, 1988, 11, 127-135.	2.1	13
149	Can relaxed time constraints on sperm production eliminate protandry in an ectotherm?. Biological Journal of the Linnean Society, 1999, 66, 159-170.	0.7	13
150	SEXUAL DIMORPHISM IN LIZARD BODY SHAPE: THE ROLES OF SEXUAL SELECTION AND FECUNDITY SELECTION. Evolution; International Journal of Organic Evolution, 2002, 56, 1538.	1.1	13
151	Female dragons, Ctenophorus pictus, do not prefer scent from unrelated males. Australian Journal of Zoology, 2005, 53, 279.	0.6	13
152	Costly parasite resistance: a genotype-dependent handicap in sand lizards?. Biology Letters, 2005, 1, 375-377.	1.0	13
153	Polymorphic ROS scavenging revealed by CCCP in a lizard. Die Naturwissenschaften, 2009, 96, 845-849.	0.6	13
154	Territoriality in Lake Eyre Dragons <i>Ctenophorus maculosus</i> : are Males â€~Superterritorial'?. Ethology, 1995, 101, 222-227.	0.5	13
155	Conditional Handicaps in Exuberant Lizards: Bright Color in Aggressive Males Is Correlated with High Levels of Free Radicals. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	13
156	Seasonal shifts along the oviparity–viviparity continuum in a cold-climate lizard population. Journal of Evolutionary Biology, 2018, 31, 4-13.	0.8	13
157	Telomere length varies substantially between blood cell types in a reptile. Royal Society Open Science, 2020, 7, 192136.	1.1	13
158	Acid-shock, aluminium, and presence ofSphagnum aurantiacum: Effects on embryological development in the common frog,Rana temporaria and the moor frog,Rana arvalis. Bulletin of Environmental Contamination and Toxicology, 1987, 39, 37-44.	1.3	12
159	Offspring-driven local dispersal in female sand lizards (Lacerta agilis). Journal of Evolutionary Biology, 2004, 17, 1215-1220.	0.8	12
160	Discrepancy in mitochondrial and nuclear polymorphism in meadow vipers (Vipera ursinii) questions the unambiguous use of mtDNA in conservation studies. Amphibia - Reptilia, 2005, 26, 287-292.	0.1	12
161	Male and female effects on fertilization success and offspring viability in the Peron's tree frog, <i>Litoria peronii</i> . Austral Ecology, 2008, 33, 348-352.	0.7	12
162	Rival recognition affects male contest behavior in sand lizards (Lacerta agilis). Behavioral Ecology and Sociobiology, 1994, 35, 249-252.	0.6	12

#	Article	IF	CITATIONS
163	Developmental stability and genetic architecture: a comparison within and across thermal regimes in tadpoles. Journal of Evolutionary Biology, 2002, 15, 625-633.	0.8	11
164	Size matters: extraordinary rodent abundance on an Australian tropical flood plain. Austral Ecology, 2006, 31, 361-365.	0.7	11
165	Offspring size-number trade-off in a lizard with small clutch sizes: tests of invariants and potential implications. Evolutionary Ecology, 2009, 23, 363-372.	0.5	11
166	Evaluation of offspring size–number invariants in 12 species of lizard. Journal of Evolutionary Biology, 2009, 22, 143-151.	0.8	11
167	Digit ratio, polychromatism and associations with endurance and antipredator behaviour in male painted dragon lizards. Animal Behaviour, 2012, 84, 1261-1269.	0.8	11
168	The relationship of body condition, superoxide dismutase, and superoxide with sperm performance. Behavioral Ecology, 2019, 30, 1351-1363.	1.0	11
169	Temperature and telomeres: thermal treatment influences telomere dynamics through a complex interplay of cellular processes in a cold-climate skink. Oecologia, 2019, 191, 767-776.	0.9	11
170	Individual telomere dynamics and their links to life history in a viviparous lizard. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210271.	1.2	11
171	Determinants of breeding dispersal in the sand lizard,Lacerta agilis, (Reptilia, Squamata). Biological Journal of the Linnean Society, 1997, 60, 243-256.	0.7	10
172	Family and population effects on disease resistance in a reptile. Heredity, 2003, 91, 112-116.	1.2	10
173	Continuous male presence required for fertilization in captive painted dragons,Ctenophorus pictus. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2005, 303A, 1115-1119.	1.3	10
174	Pre-hatching exposure to water mold reduces size at metamorphosis in the moor frog. Oecologia, 2009, 160, 9-14.	0.9	10
175	Net superoxide levels: steeper increase with activity in cooler female and hotter male lizards. Journal of Experimental Biology, 2012, 215, 731-735.	0.8	10
176	Developmental plasticity in an unusual animal: theÂeffects of incubation temperature on behavior inÂchameleons. Behaviour, 2015, 152, 1307-1324.	0.4	10
177	Degrees of change: between and within population variation in thermal reaction norms of phenology in a viviparous lizard. Ecology, 2020, 101, e03136.	1.5	10
178	DOES MATE GUARDING PREVENT RIVAL MATING IN SNOW SKINKS? A TEST USING AFLP. Herpetologica, 2005, 61, 389-394.	0.2	9
179	Territory acquisition in a polymorphic lizard: An experimental approach. Austral Ecology, 2008, 33, 1015-1021.	0.7	9
180	Predictors of telomere content in dragon lizards. Die Naturwissenschaften, 2012, 99, 661-664.	0.6	9

#	Article	IF	CITATIONS
181	Effects of male telomeres on probability of paternity in sand lizards. Biology Letters, 2018, 14, 20180033.	1.0	9
182	How accurately do behavioural observations predict reproductive success in free-ranging lizards?. Biology Letters, 2019, 15, 20190030.	1.0	9
183	Covariation in superoxide, sperm telomere length and sperm velocity in a polymorphic reptile. Behavioral Ecology and Sociobiology, 2020, 74, 1.	0.6	9
184	Effects of Growth Rate on Variation in Breeding Coloration in Male Sand Lizards (Lacerta agilis:) Tj ETQq0 0 0 rgBT	/Overlock 1.4	8 10 Tf 50 62
185	Polymorphic male color morphs visualized with steroids in monomorphic females: a tool for designing analysis of sex-limited trait inheritance. Journal of Experimental Biology, 2012, 215, 575-577.	0.8	8
186	Why are sand lizard males (Lacerta agilis) not equally green?. Behavioral Ecology and Sociobiology, 1994, 35, 169-173.	0.6	8
187	No seasonal sex-ratio shift despite sex-specific fitness returns of hatching date in a lizard with genotypic sex determination. Evolution; International Journal of Organic Evolution, 2006, 60, 2131-6.	1.1	8
188	The more pieces, the better the puzzle: sperm concentration increases gametic compatibility. Ecology and Evolution, 2015, 5, 4354-4364.	0.8	7
189	Extreme plasticity in reproductive biology of an oviparous lizard. Ecology and Evolution, 2018, 8, 6384-6389.	0.8	7
190	Determinants of breeding dispersal in the sand lizard, Lacerta agilis, (Reptilia, Squamata). Biological Journal of the Linnean Society, 1997, 60, 243-256.	0.7	6
191	Crosses between frog populations reveal genetic divergence in larval life history at short geographical distance. Biological Journal of the Linnean Society, 2006, 89, 189-195.	0.7	6
192	Microsatellite markers developed for a Swedish population of sand lizard (Lacerta agilis). Conservation Genetics, 2008, 9, 715-717.	0.8	6
193	Multifactorial Sex Determination in Chameleons. Journal of Herpetology, 2016, 50, 548-551.	0.2	6

194	Vitellogenin offsets oxidative costs of reproduction in female painted dragon lizards. Journal of Experimental Biology, 2020, 223, .	0.8	6
195	Can relaxed time constraints on sperm production eliminate protandry in an ectotherm?. Biological Journal of the Linnean Society, 1999, 66, 159-170.	0.7	6
196	Sex ratio variation and sex determination in the mallee dragon <i>Ctenophorus fordi</i> . Integrative Zoology, 2008, 3, 157-165.	1.3	5
197	Free radicals run in lizard families without (and perhaps with) mitochondrial uncoupling. Biology Letters, 2009, 5, 345-346.	1.0	5

198Tail loss and telomeres: consequences of large-scale tissue regeneration in a terrestrial ectotherm.1.05Biology Letters, 2019, 15, 20190151.5

#	Article	IF	CITATIONS
199	Exercise training has morph-specific effects on telomere, body condition and growth dynamics in a color-polymorphic lizard. Journal of Experimental Biology, 2021, 224, .	0.8	5

200 Colonization, genetic diversity, and evolution in the Swedish sand lizard, Lacerta agilis (Reptilia,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 70

201	Polymorphic microsatellite loci in the Australian tree frog, Litoria peronii. Conservation Genetics, 2007, 8, 999-1001.	0.8	4
202	Sperm competition and offspring viability at hybridization in Australian tree frogs, Litoria peronii and L. tyleri. Heredity, 2010, 104, 141-147.	1.2	4
203	Incubation temperature and parental identity determine sex in the Australian agamid lizard Ctenophorus pictus. Ecology and Evolution, 2018, 8, 9827-9833.	0.8	4
204	Long term effects of outbreeding: experimental founding of island population eliminates malformations and improves hatching success in sand lizards. Biological Conservation, 2020, 249, 108710.	1.9	4
205	Disentangling the complexities of vertebrate sex allocation: a role for squamate reptiles?. , 2007, 116, 1051.		4
206	The role of Haldane's rule in sex allocation. Evolution; International Journal of Organic Evolution, 2005, 59, 221-5.	1.1	4
207	GROWTH TO DEATH IN LIZARDS. Evolution; International Journal of Organic Evolution, 2002, 56, 1867.	1.1	3
208	FECUNDITY AND MHC AFFECTS EJACULATION TACTICS AND PATERNITY BIAS IN SAND LIZARDS. Evolution; International Journal of Organic Evolution, 2004, 58, 906.	1.1	3
209	Ectoparasite susceptibility in lizards from populations sympatric and allopatric with ticks. Ecoscience, 2004, 11, 428-432.	0.6	3
210	Consistent Paternity Skew through Ontogeny in Peron's Tree Frog (Litoria peronii). PLoS ONE, 2009, 4, e8252.	1.1	3
211	Vitamin E Does Not Elevate Survival in Free-Ranging Lizards. Copeia, 2009, 2009, 339-341.	1.4	3
212	Stress-related changes in leukocyte profiles and telomere shortening in the shortest-lived tetrapod, Furcifer labordi. BMC Evolutionary Biology, 2020, 20, 160.	3.2	3
213	THE ROLE OF HALDANE'S RULE IN SEX ALLOCATION. Evolution; International Journal of Organic Evolution, 2005, 59, 221.	1.1	2
214	On parsimonious paternity and scientific rigor: a reply to Madsen. Molecular Ecology, 2009, 18, 25-27.	2.0	2
215	Complex selection associated with <i>Hox</i> genes in a natural population of lizards. Journal of Evolutionary Biology, 2011, 24, 2520-2524.	0.8	2
216	The Influence of Incubation Temperature on Phenotype of Australian Painted Dragons (<i>Ctenophorus pictus</i>). Herpetologica, 2018, 74, 146-151.	0.2	2

#	Article	IF	CITATIONS
217	Inconsistent inbreeding effects during lizard ontogeny. Conservation Genetics, 2019, 20, 865-874.	0.8	2
218	Variation in heritability of tadpole growth: an experimental analysis. , 0, .		1
219	NO SEASONAL SEX-RATIO SHIFT DESPITE SEX-SPECIFIC FITNESS RETURNS OF HATCHING DATE IN A LIZARD WITH GENOTYPIC SEX DETERMINATION. Evolution; International Journal of Organic Evolution, 2006, 60, 2131	1.1	Ο