Luca Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4373073/publications.pdf

Version: 2024-02-01

489802 591227 1,610 35 18 27 h-index citations g-index papers 40 40 40 2626 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	<i>MTMR4</i> SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovascular Research, 2021, 117, 767-779.	1.8	34
2	Precision Medicine and cardiac channelopathies: when dreams meet reality. European Heart Journal, 2021, 42, 1661-1675.	1.0	34
3	Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare <i>KCNH2</i> Variants. Circulation Genomic and Precision Medicine, 2021, 14, e003289.	1.6	10
4	Cardiac microtissues from human pluripotent stem cells recapitulate the phenotype of long-QT syndrome. Biochemical and Biophysical Research Communications, 2021, 572, 118-124.	1.0	8
5	Use of hiPSC-Derived Cardiomyocytes to Rule Out Proarrhythmic Effects of Drugs: The Case of Hydroxychloroquine in COVID-19. Frontiers in Physiology, 2021, 12, 730127.	1.3	4
6	Isogenic Sets of hiPSC-CMs Harboring Distinct KCNH2 Mutations Differ Functionally and in Susceptibility to Drug-Induced Arrhythmias. Stem Cell Reports, 2020, 15, 1127-1139.	2.3	23
7	Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell, 2020, 26, 862-879.e11.	5.2	337
8	Cardiac Repolarization and Stem Cells: An Emerging Path Toward Precision Medicine., 2020,, 87-107.		1
9	Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nature Communications, 2019, 10, 4325.	5.8	51
10	From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome Type 2. European Heart Journal, 2019, 40, 1832-1836.	1.0	69
11	Precision Versus Traditional Medicine—Clinical Questions Trigger Progress in Basic Science. Circulation Research, 2019, 124, 459-461.	2.0	5
12	Long QT Syndrome Modelling with Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells. Arrhythmia and Electrophysiology Review, 2019, 8, 105-110.	1.3	36
13	MUSCLEMOTION. Circulation Research, 2018, 122, e5-e16.	2.0	235
14	Action potential contour contributes to species differences in repolarization response to \hat{l}^2 -adrenergic stimulation. Europace, 2018, 20, 1543-1552.	0.7	22
15	Calmodulinopathy: A Novel, Life-Threatening Clinical Entity Affecting the Young. Frontiers in Cardiovascular Medicine, 2018, 5, 175.	1.1	25
16	Calmodulinopathy: Functional Effects of CALM Mutations and Their Relationship With Clinical Phenotypes. Frontiers in Cardiovascular Medicine, 2018, 5, 176.	1.1	19
17	Quantification of Muscle Contraction <i>In Vitro</i> and <i>In Vivo</i> Using MUSCLEMOTION Software: From Stem Cellâ€Derived Cardiomyocytes to Zebrafish and Human Hearts. Current Protocols in Human Genetics, 2018, 99, e67.	3.5	14
18	Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development (Cambridge), 2017, 144, 1008-1017.	1.2	216

#	Article	IF	Citations
19	Electrophysiological Analysis of human Pluripotent Stem Cell-derived Cardiomyocytes (hPSC-CMs) Using Multi-electrode Arrays (MEAs). Journal of Visualized Experiments, 2017, , .	0.2	27
20	Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?. British Journal of Pharmacology, 2017, 174, 3749-3765.	2.7	104
21	Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovascular Research, 2017, 113, 531-541.	1.8	110
22	Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?., 2017, 174, 3749.		1
23	A new <scp>hERG</scp> allosteric modulator rescues genetic and drugâ€induced longâ€ <scp>QT</scp> syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Molecular Medicine, 2016, 8, 1065-1081.	3.3	77
24	Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes Carrying CALM1-F142l Mutation Recapitulate LQTS Phenotype in Vitro. Biophysical Journal, 2016, 110, 263a.	0.2	0
25	Late sodium current (INaL) in pancreatic Î ² -cells. Pflugers Archiv European Journal of Physiology, 2015, 467, 1757-1768.	1.3	12
26	<i>I</i> _{Kr} Impact on Repolarization and Its Variability Assessed by Dynamic Clamp. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1265-1275.	2.1	33
27	Ranolazine prevents INaL enhancement and blunts myocardial remodelling in a model of pulmonary hypertension. Cardiovascular Research, 2014, 104, 37-48.	1.8	42
28	Inal in the Pathophysiology of Insulin-Secretion: A "Cardiac―Paradigm in a New Cell Type. Biophysical Journal, 2014, 106, 327a.	0.2	0
29	Ikr Impact on Repolarization and its Variability Assessed by Dynamic-Clamp. Biophysical Journal, 2014, 106, 121a.	0.2	0
30	Genotype-Phenotype Correlation in Induced Pluripotent Stem Cell (iPSC)Derived Cardiomyocytes Carrying Calmodulin Mutations. Biophysical Journal, 2014, 106, 333a.	0.2	1
31	Action Potential Shape Differences Set Species-Dependent \hat{I}^2 -Adrenergic-Stimulation Response. Biophysical Journal, 2014, 106, 119a.	0.2	0
32	Altered functional differentiation of mesoangioblasts in a genetic myopathy. Journal of Cellular and Molecular Medicine, 2013, 17, 419-428.	1.6	3
33	Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death and Differentiation, 2012, 19, 1162-1174.	5.0	55
34	Aberrant Functional Differentiation of Cardiac Precursors from a Dystrophic Mouse. Biophysical Journal, 2012, 102, 674a.	0.2	0
35	Prevention of Myocardial Remodeling by Chronic INaL Blockade in Pulmonary Hypertension. Biophysical Journal, 2012, 102, 340a.	0.2	0