Sankar Prasad Rath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372987/publications.pdf

Version: 2024-02-01

121 3,579
papers citations

36 h-index 206029 48 g-index

126 all docs 126 docs citations 126 times ranked 1831 citing authors

#	Article	IF	CITATIONS
1	Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. Chemical Communications, 2004, , 2814.	2.2	126
2	Hydrogenâ€Bonding Interactions Trigger a Spinâ€Flip in Iron(III) Porphyrin Complexes. Angewandte Chemie - International Edition, 2015, 54, 4796-4800.	7.2	83
3	Synthesis and Characterization of <i>anti</i> bisFe(III) Porphyrins, <i>syn</i> bisFe(III)-μ-oxo Porphyrin, and <i>syn</i> bisFe(III)-μ-oxo Porphyrin Cation Radical. Inorganic Chemistry, 2010, 49, 3449-3460.	1.9	80
4	A Remarkably Bent Diiron(III)-μ-Hydroxo Bisporphyrin: Unusual Stabilization of Two Spin States of Iron in a Single Molecular Framework. Journal of the American Chemical Society, 2010, 132, 17983-17985.	6.6	75
5	Remarkably Bent, Ethane-Linked, Diiron(III) μ-Oxobisporphyrin: Synthesis, Structure, Conformational Switching, and Photocatalytic Oxidation. Inorganic Chemistry, 2008, 47, 10196-10198.	1.9	64
6	An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme–heme interactions. Dalton Transactions, 2015, 44, 16195-16211.	1.6	61
7	Modulation of Metal Displacements in a Saddle Distorted Macrocycle: Synthesis, Structure, and Properties of High-Spin Fe(III) Porphyrins and Implications for the Hemoproteins. Inorganic Chemistry, 2008, 47, 8324-8335.	1.9	60
8	Encapsulation of TCNQ and the Acridinium Ion within a Bisporphyrin Cavity: Synthesis, Structure, and Photophysical and HOMO–LUMOâ€Gapâ€Mediated Electronâ€Transfer Properties. Chemistry - A European Journal, 2012, 18, 7404-7417.	1.7	60
9	Synthesis, structure and photocatalytic activity of a remarkably bent, cofacial ethene-linked diiron (III) ξ-oxobisporphyrin. Inorganica Chimica Acta, 2010, 363, 2791-2799.	1.2	59
10	Control of spins by ring deformation in a diiron(iii)bisporphyrin: reversal of ClO4â ⁻ and CF3SO3â ⁻ ligand field strength in the magnetochemical series. Chemical Communications, 2011, 47, 4790.	2.2	56
11	A Family of (N-Salicylidene-α-amino acidato)vanadate Esters Incorporating Chelated Propane-1,3-diol and Glycerol: Synthesis, Structure, and Reaction. Inorganic Chemistry, 1998, 37, 1713-1719.	1.9	53
12	Unusual Stabilization of an Intermediate Spin State of Iron upon the Axial Phenoxide Coordination of a Diiron(III)–Bisporphyrin: Effect of Heme–Heme Interactions. Chemistry - A European Journal, 2013, 19, 13732-13744.	1.7	53
13	Axial Ligand Orientations in a Distorted Porphyrin Macrocycle: Synthesis, Structure, and Properties of Low-Spin Bis(imidazole)iron(III) and Iron(II) Porphyrinatesâ€Dedicated to Prof. Animesh Chakravorty on the occasion of his 75th birthday Inorganic Chemistry, 2010, 49, 2057-2067.	1.9	52
14	Protonation of an Oxoâ€Bridged Diiron Unit Gives Two Different Iron Centers: Synthesis and Structure of a New Class of Diiron(III)â€1¼â€hydroxo Bisporphyrins and the Control of Spin States by Using Counterions. Chemistry - A European Journal, 2012, 18, 13025-13037.	1.7	52
15	Oxo- and hydroxo-bridged diiron(III) porphyrin dimers: Inorganic and bio-inorganic perspectives and effects of intermacrocyclic interactions. Coordination Chemistry Reviews, 2017, 337, 112-144.	9.5	52
16	Chemistry of hydrazonato oxovanadium(V) alkoxides derived from dihydric/monohydric alcohols. Inorganica Chimica Acta, 1997, 263, 247-253.	1.2	51
17	Highly Enhanced Bisignate Circular Dichroism of Ferrocene-Bridged Zn(II) Bisporphyrin <i>Tweezer</i> with Extended Chiral Substrates due to Well-Matched Host–Guest System. Inorganic Chemistry, 2014, 53, 2381-2395.	1.9	50
18	Spin-State Ordering in Hydroxo-Bridged Diiron(III)bisporphyrin Complexes. Inorganic Chemistry, 2015, 54, 1919-1930.	1.9	49

#	Article	IF	CITATIONS
19	Effect of Heme–Heme Interactions and Modulation of Metal Spins by Counter Anions in a Series of Diiron(III)â€Î¼â€hydroxo Bisporphyrins: Unusual Stabilization of Two Different Spins in a Single Molecular Framework. Chemistry - A European Journal, 2013, 19, 17846-17859.	1.7	48
20	Synâ€"anti conformational switching in an ethane-bridged Co(ii)bisporphyrin induced by external stimuli: effects of inter-macrocyclic interactions, axial ligation and chemical and electrochemical oxidations. Dalton Transactions, 2014, 43, 2301-2314.	1.6	47
21	Effects of axial pyridine coordination on a saddle-distorted porphyrin macrocycle: stabilization of hexa-coordinated high-spin Fe(iii) and air-stable low-spin iron(ii) porphyrinates. Dalton Transactions, 2010, 39, 5795.	1.6	46
22	Axial Thiophenolate Coordination on Diiron(III)bisporphyrin: Influence of Hemeâ€"Heme Interactions on Structure, Function and Electrochemical Properties of the Individual Heme Center. Inorganic Chemistry, 2014, 53, 11925-11936.	1.9	46
23	A Highly Oxidized Cobalt Porphyrin Dimer: Spin Coupling and Stabilization of the Fourâ€Electron Oxidation Product. Angewandte Chemie - International Edition, 2016, 55, 996-1000.	7.2	46
24	Efficient Complexation of Pyrroleâ€Bridged Dizinc(II) Bisporphyrin with Fluorescent Probe Pyrene: Synthesis, Structure, and Photoinduced Singlet–Singlet Energy Transfer. Chemistry - A European Journal, 2011, 17, 11478-11487.	1.7	44
25	Oxidation triggers extensive conjugation and unusual stabilization of two di-heme dication diradical intermediates: role of bridging group for electronic communication. Chemical Science, 2016, 7, 1212-1223.	3.7	44
26	Synthesis, Structure, and Properties of a Series of Chiral Tweezer–Diamine Complexes Consisting of an Achiral Zinc(II) Bisporphyrin Host and Chiral Diamine Guest: Induction and Rationalization of Supramolecular Chirality. Inorganic Chemistry, 2014, 53, 49-62.	1.9	43
27	Axial Ligand Coordination in Sterically Strained Vanadyl Porphyrins: Synthesis, Structure, and Properties. Inorganic Chemistry, 2008, 47, 9848-9856.	1.9	42
28	Induction of supramolecular chirality in di-zinc(ii) bisporphyrin via tweezer formation: synthesis, structure and rationalization of chirality. Chemical Communications, 2012, 48, 4070.	2.2	42
29	Effect of Two Interacting Rings in Metalloporphyrin Dimers upon Stepwise Oxidations. Inorganic Chemistry, 2016, 55, 3229-3238.	1.9	42
30	Building-up Remarkably Stable Magnesium Porphyrin Polymers Self-Assembled via Bidentate Axial Ligands: Synthesis, Structure, Surface Morphology, and Effect of Bridging Ligands. Inorganic Chemistry, 2012, 51, 9666-9676.	1.9	41
31	Formation of a Highly Oxidized Iron Biliverdin Complex upon Treatment of a Five-Coordinate Verdoheme with Dioxygen. Journal of the American Chemical Society, 2004, 126, 6210-6211.	6.6	40
32	Cyanide binding to iron in a highly distorted porphyrin macrocycle: Synthesis and structure of low-spin Fe(II) dicyano porphyrin. Inorganic Chemistry Communication, 2009, 12, 515-519.	1.8	40
33	Diiron(III)–μâ€Fluoro Bisporphyrins: Effect of Bridging Ligand on the Metal Spin State. Chemistry - A European Journal, 2016, 22, 11214-11223.	1.7	39
34	Formation and Isolation of an Iron-Tripyrrole Complex from Heme Degradation. Journal of the American Chemical Society, 2003, 125, 12678-12679.	6.6	38
35	Syn–anti conformational switching: Synthesis and X-ray structures of tweezer and anti form in a zinc porphyrin dimer induced by axial ligands. Inorganica Chimica Acta, 2011, 372, 62-70.	1.2	38
36	Carbohydrate Binding to VO3+. Sugar Vanadate Esters Incorporating l-Amino Acid Schiff Bases as Coligands. Inorganic Chemistry, 1999, 38, 3283-3289.	1.9	36

#	Article	IF	CITATIONS
37	Axial phenoxide coordination on di-iron(III) bisporphyrin: Insights from experimental and DFT studies. Journal of Chemical Sciences, 2011, 123, 827-837.	0.7	36
38	Switching Orientation of Two Axial Imidazole Ligands between Parallel and Perpendicular in Low-Spin Fe(III) and Fe(II) Nonplanar Porphyrinates. Inorganic Chemistry, 2012, 51, 11294-11305.	1.9	36
39	Supramolecular BODIPY-Zn(ii)-bisporphyrin dyad and trinitrofluorenone encapsulated triad as models of antenna-reaction center: synthesis, structure and photophysical properties. Dalton Transactions, 2013, 42, 12381.	1.6	36
40	Hydroxo-bridged diiron(<scp>iii</scp>) and dimanganese(<scp>iii</scp>) bisporphyrins: modulation of metal spins by counter anions. Dalton Transactions, 2017, 46, 1012-1037.	1.6	36
41	Multiheme proteins: effect of heme–heme interactions. Dalton Transactions, 2018, 47, 14388-14401.	1.6	36
42	Effect of Interâ∈Porphyrin Distance on Spinâ∈State in Diiron(III) μâ∈Hydroxo Bisporphyrins. Chemistry - A European Journal, 2016, 22, 14585-14597.	1.7	35
43	Chemistry of oxovanadium(V) alkoxides: synthesis and structure of mononuclear complexes incorporating ethane-1,2-diol. Journal of the Chemical Society Dalton Transactions, 1996, , 99.	1.1	34
44	The Effects of Axial Ligands on Electron Distribution and Spin States in Iron Complexes of Octaethyloxophlorin, Intermediates in Heme Degradation. Journal of the American Chemical Society, 2004, 126, 6379-6386.	6.6	34
45	Synthesis and structure of vanadate esters of glycerol and propane-1,3-diol. Journal of the Chemical Society Dalton Transactions, 1998, , 2097-2102.	1.1	33
46	Facile Ring Opening of Iron(III) and Iron(II) Complexes ofmeso-Amino-octaethylporphyrin by Dioxygen. Journal of the American Chemical Society, 2004, 126, 646-654.	6.6	33
47	Hydrogenâ€Bonding Interactions Trigger a Spinâ€Flip in Iron(III) Porphyrin Complexes. Angewandte Chemie, 2015, 127, 4878-4882.	1.6	33
48	Controlled generation of highly saddled (porphyrinato)iron(<scp>iii</scp>) iodide, tri-iodide and one-electron oxidized complexes. Chemical Communications, 2015, 51, 16790-16793.	2.2	33
49	Silver(III)âââSilver(III) Interactions that Stabilize the <i>syn</i> Form in a Porphyrin Dimer Upon Oxidation. Angewandte Chemie - International Edition, 2017, 56, 8849-8854.	7.2	33
50	Formation of exo–exo, exo–endo and tweezer conformation induced by axial ligand in a Zn(II) bisporphyrin: Synthesis, structure and properties. Polyhedron, 2013, 52, 761-769.	1.0	32
51	A Nonempirical Approach for Direct Determination of the Absolute Configuration of 1,2-Diols and Amino Alcohols Using Mg(II)bisporphyrin. Journal of Organic Chemistry, 2016, 81, 5440-5449.	1.7	31
52	Synthesis, Structure, and Catecholase Reaction of a Vanadate Ester System Incorporating Monoionized Catechol Chelation. Inorganic Chemistry, 1999, 38, 4376-4377.	1.9	30
53	Electron Distribution in Iron Octaethyloxophlorin Complexes. Importance of the Fe(III) Oxophlorin Trianion Form in the Bis-pyridine and Bis-imidazole Complexes. Inorganic Chemistry, 2006, 45, 6083-6093.	1.9	30
54	Highly Selective and Sensitive Detection of Picric Acid Explosive by a Bisporphyrin Cleft: Synergistic Effects of Encapsulation, Efficient Electron Transfer, and Hydrogen Bonding. European Journal of Inorganic Chemistry, 2015, 2015, 4956-4964.	1.0	30

#	Article	IF	Citations
55	Step-wise induction, amplification and inversion of molecular chirality through the coordination of chiral diamines with Zn(ii) bisporphyrin. Chemical Communications, 2015, 51, 895-898.	2.2	30
56	Remarkable Anionâ€Dependent Spinâ€State Switching in Diiron(III) μâ€Hydroxo Bisporphyrins: What Role Do Counterions Play?. Chemistry - A European Journal, 2016, 22, 16124-16137.	1.7	30
57	Complexation of Chiral Zinc-Porphyrin Tweezer with Achiral Diamines: Induction and Two-Step Inversion of Interporphyrin Helicity Monitored by ECD. Inorganic Chemistry, 2017, 56, 3849-3860.	1.9	30
58	Synthesis, structure and properties of mononuclear oxovanadium(V) alkoxides incorporating chelated ethane-1,2-diol and propane-1,3-diol. Polyhedron, 2000, 19, 931-936.	1.0	28
59	Transfer and control of molecular chirality in the $1\hat{a}$ €‰: \hat{a} €‰2 host \hat{a} €"guest supramolecular complex consisting of Mg(ii)bisporphyrin and chiral diols: the effect of H-bonding on the rationalization of chirality. Chemical Communications, 2014, 50, 14037-14040.	2.2	28
60	Spin Modulation in Highly Distorted Fe ^{III} Porphyrinates by Using Axial Coordination and Their π ation Radicals. European Journal of Inorganic Chemistry, 2016, 2016, 3441-3453.	1.0	28
61	Experimental and Theoretical Investigation of a Series of Novel Dimanganese(III) Î⅓-Hydroxo Bisporphyrins: Magneto–Structural Correlation and Effect of Metal Spin on Porphyrin Core Deformation. Inorganic Chemistry, 2016, 55, 3239-3251.	1.9	28
62	Metal-coordination-driven mixed ligand binding in supramolecular bisporphyrin tweezers. Chemical Communications, 2015, 51, 14107-14110.	2.2	27
63	Cyclic Zinc(II) Bisporphyrinâ€Based Molecular Switches: Supramolecular Control of Complexationâ€Mediated Conformational Switching and Photoinduced Electron Transfer. Chemistry - A European Journal, 2016, 22, 5607-5619.	1.7	27
64	Cyclic Bisâ€porphyrinâ€Based Flexible Molecular Containers: Controlling Guest Arrangements and Supramolecular Catalysis by Tuning Cavity Size. Chemistry - A European Journal, 2017, 23, 7093-7103.	1.7	27
65	Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coordination Chemistry Reviews, 2020, 405, 213117.	9.5	27
66	Heme Cleavage with Remarkable Ease:  Paramagnetic Intermediates Formed by Aerobic Oxidation of a Meso-Amino-Substituted Iron Porphyrin. Journal of the American Chemical Society, 2003, 125, 4674-4675.	6.6	26
67	Binding of Catechols to Iron(III)–Octaethylporphyrin: An Experimental and DFT Investigation. European Journal of Inorganic Chemistry, 2010, 2010, 5211-5221.	1.0	26
68	Oxidative Verdoheme Formation and Stabilization by Axial Isocyanide Ligation. Inorganic Chemistry, 2004, 43, 7648-7655.	1.9	24
69	The Effect of Steric Crowding on Porphyrin Conformation and Ring Orientations in a Series of Iron(III) Î ¹ /4-Oxo Dimers Containingmeso-Nitrooctaethylporphyrins. European Journal of Inorganic Chemistry, 2009, 2009, 654-665.	1.0	24
70	Probing Bisâ€Fe ^{IV} MauG: Isolation of Highly Reactive Radical Intermediates. Chemistry - A European Journal, 2017, 23, 10270-10275.	1.7	24
71	Complexation of Chiral Zinc(II) Porphyrin Tweezer with Achiral Aliphatic Diamines Revisited: Molecular Dynamics, Electronic CD, and 1H NMR Analysis. Inorganic Chemistry, 2019, 58, 11420-11438.	1.9	24
72	Diheme Cytochrome <i>c</i> : Structure–Function Correlation and Effect of Hemeâ^'Heme Interactions. Inorganic Chemistry, 2018, 57, 11498-11510.	1.9	23

#	Article	IF	Citations
73	Sugar Binding to VO3+. Synthesis and Structure of a New Mannopyranoside Vanadate. Inorganic Chemistry, 2000, 39, 1598-1601.	1.9	22
74	Reactions ofmeso-Hydroxyhemes with Carbon Monoxide and Reducing Agents in Search of the Elusive Species Responsible for theg= 2.006 Resonance of Carbon Monoxide-Treated Heme Oxygenase. Isolation of Diamagnetic Iron(II) Complexes of Octaethyl-meso-hydroxyporphyrin. Inorganic Chemistry, 2004, 43, 6357-6365.	1.9	22
75	Unusual Stabilization of Dication Diradical Intermediate of Dizinc(II) Porphyrin Dimer. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 856-863.	0.6	21
76	Induction, control, and rationalization of supramolecular chirogenesis using metalloporphyrin <i>tweezers</i> : a structure-function correlation. Dalton Transactions, 2020, 49, 10679-10700.	1.6	21
77	A Tunable Cyclic Container: Guestâ€Induced Conformational Switching, Efficient Guest Exchange, and Selective Isolation of C ₇₀ from a Fullerene Mixture. Chemistry - an Asian Journal, 2017, 12, 1824-1835.	1.7	20
78	Intermacrocyclic Interaction Triggers Facile Oneâ€Pot Synthesis of a Chlorin–Porphyrin Heterodimer. Chemistry - A European Journal, 2017, 23, 13415-13422.	1.7	20
79	Metal Complexes ofmeso-Amino-octaethylporphyrin and the Oxidation of Nill(meso-amino-octaethylporphyrin). Inorganic Chemistry, 2005, 44, 1452-1459.	1.9	19
80	First Ruthenium Complex of Glyoxalbis(N-phenyl)osazone (LNHPhH2):Â Synthesis, X-ray Structure, Spectra, and Density Functional Theory Calculations of (LNHPhH2)Ru(PPh3)2Cl2. Inorganic Chemistry, 2007, 46, 5942-5948.	1.9	19
81	Induction and Rationalization of Supramolecular Chirality in the Tweezer–Diamine Complexes: Insights from Experimental and DFT Studies. Inorganic Chemistry, 2016, 55, 13014-13026.	1.9	19
82	Throughâ€Space Spin Coupling in a Silver(II) Porphyrin Dimer upon Stepwise Oxidations: Ag II â‹â‹â‹Ag II , â‹â‹â‹Ag III , and Ag III â‹â‹â‹Ag III Metallophilic Interactions. Chemistry - A European Journal, 2019, 2	Ag II 5, 10098-1	.01 1 8.
83	Reversible Binding of Nitric Oxide and Carbonâ^'Carbon Bond Formation in a Meso-hydroxylated Heme. Journal of the American Chemical Society, 2003, 125, 11798-11799.	6.6	17
84	Aggregation-controlled excimer emission in an axial anthracene–Sn(<scp>iv</scp>)porphyrin–anthracene triad in the solid and solution phases. New Journal of Chemistry, 2015, 39, 4100-4108.	1.4	17
85	Metal-Center-Driven Supramolecular Chirogenesis in <i>Tweezer</i> Amino Alcohol Complexes: Structural, Spectroscopic, and Theoretical Investigations. Inorganic Chemistry, 2017, 56, 15203-15215.	1.9	17
86	Modulation of iron spin in ethane-bridged diiron(III) porphyrin dimer: anion dependent spin state switching. Journal of Chemical Sciences, 2018, 130, 1.	0.7	17
87	A dimanganese(iii) porphyrin dication diradical and its transformation to a μ-hydroxo porphyrin–oxophlorin heterodimer. Chemical Communications, 2019, 55, 1588-1591.	2.2	17
88	Equatorial ligand plane perturbations lead to a spin-state change in an iron(iii) porphyrin dimer. Dalton Transactions, 2019, 48, 6353-6357.	1.6	17
89	Self-assembly of cobalt(ii) and zinc(ii) tetranitrooctaethylporphyrin via bidentate axial ligands: synthesis, structure, surface morphology and effect of axial coordination. New Journal of Chemistry, 2014, 38, 1458.	1.4	16
90	Efficient Hostâ€Guest Complexation of a Bisporphyrin Host with Electron Deficient Guests: Synthesis, Structure, and Photoinduced Electron Transfer. Israel Journal of Chemistry, 2016, 56, 144-155.	1.0	16

#	Article	IF	CITATIONS
91	Binuclear Highly Distorted Iron(III) Porphyrins Bridged by the Dianions of Hydroquinones: Role of the Bridge in Electronic Communication. European Journal of Inorganic Chemistry, 2016, 2016, 3305-3313.	1.0	16
92	A Novel Pentacoordinated Dioxovanadium(V) Salicylaldiminate: Solvent Specific Crystallization of Dimorphs with Contrasting Coordination Geometries, Ligand Conformations and Supramolecular Architectures. European Journal of Inorganic Chemistry, 2004, 2004, 1873-1878.	1.0	15
93	Building-up novel coordination polymer with Zn(II) porphyrin dimer: Synthesis, structures, surface morphology and effect of axial ligands. Journal of Chemical Sciences, 2014, 126, 1451-1461.	0.7	15
94	Ethene-bridged diiron porphyrin dimer as models of diheme cytochrome c: Structure-function correlation and modulation of heme redox potential. Inorganica Chimica Acta, 2019, 484, 503-512.	1.2	15
95	Stepwise Oxidations in a Cofacial Copper(II) Porphyrin Dimer: Throughâ€Space Spinâ€Coupling and Interplay between Metal and Radical Spins. Chemistry - A European Journal, 2020, 26, 7869-7880.	1.7	15
96	Sugar vanadates: synthesis and characterisation of mannopyranoside and ribofuranoside esters incorporating VO3+. Journal of the Chemical Society Dalton Transactions, 1999, , 2537-2540.	1.1	14
97	Ruthenium dithiophosphates: synthesis, X-ray crystal structure, spectroscopic and electrochemical properties. Polyhedron, 2000, 19, 801-808.	1.0	14
98	A Highly Oxidized Cobalt Porphyrin Dimer: Spin Coupling and Stabilization of the Fourâ€Electron Oxidation Product. Angewandte Chemie, 2016, 128, 1008-1012.	1.6	14
99	Axial ligand mediated switchable rotary motions in a ferrocene-bridged diiron(III) porphyrin dimer. Journal of Organometallic Chemistry, 2019, 894, 28-38.	0.8	14
100	Molecule to Supramolecule: Chirality Induction, Inversion, and Amplification in a Mg(II)porphyrin Dimer Templated by Chiral Diols. Inorganic Chemistry, 2020, 59, 801-809.	1.9	13
101	Electronic structure of the glyoxalbis(2-hydroxyanil) (gha) ligand in [CollI(gha)(PPh3)2]+: radical vs. non-radical states. Dalton Transactions, 2008, , 3438.	1.6	11
102	Iron(III) and copper(II) complexes of trans-bis(ferrocenyl)porphyrin: Effect of metal ions on long-range electronic communication. Journal of Chemical Sciences, 2015, 127, 327-335.	0.7	11
103	Complexation of Chiral Zinc(II)Porphyrin Tweezer with Chiral Guests: Control, Discrimination and Rationalization of Supramolecular Chirality. Inorganic Chemistry, 2020, 59, 7795-7809.	1.9	11
104	Controlling the Photophysics of Aromatic Guests Using a Cyclic Porphyrin Dimer: Synthesis, Structure, and Encapsulationâ€Mediated "ONâ€OFF―Switch. European Journal of Inorganic Chemistry, 2019, 2019, 3629-3637.	1.0	10
105	A counter ion triggers stabilization of two geometrical isomers of a Ni(ii) dication diradical porphyrin dimer: the role of anion–π interactions. Chemical Communications, 2019, 55, 7926-7929.	2.2	10
106	Silver(III)â<â <silver(iii) <i="" interactions="" stabilize="" that="" the="">syn Form in a Porphyrin Dimer Upon Oxidation. Angewandte Chemie, 2017, 129, 8975-8980.</silver(iii)>	1.6	8
107	Stepwise oxidations of a nickel(<scp>ii</scp>)–iron(<scp>iii</scp>) heterobimetallic porphyrin dimer: structure, spectroscopic and theoretical investigation. Dalton Transactions, 2019, 48, 10089-10103.	1.6	8
108	Dioxygen reactivity ofmeso-hydroxylated hemes: Intermediates in heme degradation process catalyzed by heme oxygenase. Journal of Chemical Sciences, 2006, 118, 463-474.	0.7	6

#	Article	IF	CITATIONS
109	Highly Oxidized Cobalt Porphyrin Dimer: Control of Spin Coupling via a Bridge. Inorganic Chemistry, 2022, 61, 8419-8430.	1.9	6
110	Stabilizing intermediate-spin state in iron(III) porphyrins. Polyhedron, 2019, 172, 8-14.	1.0	5
111	Intermacrocyclic Interactions upon Stepwise Oxidations in a Monometallic Porphyrin Dimer: Ring versus Metalâ€Center Oxidations and Effect of Counter Anions. Chemistry - A European Journal, 2020, 26, 14405-14418.	1.7	5
112	Heme–Heme Interactions in Diheme Cytochromes: Effect of Mixed-Axial Ligation on the Electronic Structure and Electrochemical Properties. Inorganic Chemistry, 2021, 60, 12870-12882.	1.9	5
113	Hydrogen-Bonding Interactions Trigger Induction of Chirality via Formation of a Cyclic Dimer. Inorganic Chemistry, 2022, 61, 2154-2166.	1.9	5
114	Hg···Hg···Hg Interaction Stabilizes Unusual Trinuclear Double Sandwich Structure of Mercury(II) Porphyrins. Inorganic Chemistry, 2020, 59, 12988-12993.	1.9	4
115	Through Bridge Spin Coupling in Homo―and Heterobimetallic Porphyrin Dimers upon Stepwise Oxidations: A Spectroscopic and Theoretical Investigation. Chemistry - A European Journal, 2021, 27, 11428-11441.	1.7	4
116	Fluoro-bridged dimanganese(III) porphyrin dimer: Effect of intermacrocyclic interactions in modulating metal spin state. Journal of Porphyrins and Phthalocyanines, 2021, 25, 522-532.	0.4	3
117	Ferromagnetic Coupling in Oxidovanadium(IV)–Porphyrin Radical Dimers. Inorganic Chemistry, 2021, 60, 16492-16506.	1.9	3
118	Long-Range Intramolecular Spin Coupling through a Redox-Active Bridge upon Stepwise Oxidations: Control and Effect of Metal Ions. Inorganic Chemistry, 2022, 61, 5270-5282.	1.9	3
119	Frontispiece: Diiron(III)–μâ€Fluoro Bisporphyrins: Effect of Bridging Ligand on the Metal Spin State. Chemistry - A European Journal, 2016, 22, .	1.7	0
120	Throughâ€Space Spin Coupling in a Silver(II) Porphyrin Dimer upon Stepwise Oxidations: Ag II â‹â‹â‹Ag II , A â‹â‹â‹Ag III , and Ag III â‹â‹â‹Ag III Metallophilic Interactions. Chemistry - A European Journal, 2019, 25,	vg ∥ , 10025-1(oo25.
121	Design and control of axial binding with flexible Zn(II) porphyrin dimer: Building-up novel polymer with exo-endo binding. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	O