Johann Plank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372967/publications.pdf Version: 2024-02-01

Ιομλνίν Ριλνικ

#	Article	IF	CITATIONS
1	Use of celesto-barite mine waste in the production of eco-friendly white cement. European Journal of Environmental and Civil Engineering, 2023, 27, 239-262.	1.0	0
2	Phase analysis and hydration behavior of fine and coarse particle fractions contained in a commercial Portland cement. Journal of Sustainable Cement-Based Materials, 2023, 12, 415-426.	1.7	0
3	C–S–H–Polycondensate nanocomposites as effective seeding materials for Portland composite cements. Cement and Concrete Composites, 2022, 125, 104278.	4.6	16
4	Performance of sustainable mortar using calcined clay, fly ash, limestone powder and reinforced with hybrid fibers. Case Studies in Construction Materials, 2022, 16, e00849.	0.8	6
5	Interaction between polycarboxylate superplasticizers and non-calcined clays and calcined clays: A review. Cement and Concrete Research, 2022, 154, 106717.	4.6	38
6	40Âyears of PCE superplasticizers - History, current state-of-the-art and an outlook. Cement and Concrete Research, 2022, 157, 106826.	4.6	64
7	Impact of metakaolin content and fineness on the behavior of calcined clay blended cements admixed with HPEG PCE superplasticizer. Cement and Concrete Composites, 2022, 133, 104654.	4.6	15
8	Impact of sand and filler materials on the hydration behavior of calcium aluminate cement. Journal of the American Ceramic Society, 2021, 104, 1067-1075.	1.9	7
9	Solventless Mechanochemical Synthesis of Phase Pure Syngenite. Chemistry Methods, 2021, 1, 78-84.	1.8	2
10	Effectiveness of PCE superplasticizers in calcined clay blended cements. Cement and Concrete Research, 2021, 141, 106334.	4.6	57
11	New insights into the effects of aging on Portland cement hydration and on retarder performance. Construction and Building Materials, 2021, 274, 122104.	3.2	5
12	Interaction of individual meta clays with polycarboxylate (PCE) superplasticizers in cement investigated via dispersion, zeta potential and sorption measurements. Applied Clay Science, 2021, 207, 106092.	2.6	38
13	Approaches to achieve fluidity retention in low-carbon calcined clay blended cements. Journal of Cleaner Production, 2021, 311, 127770.	4.6	18
14	Evaluation of phosphated superplasticizers in high-performance α-calcium sulfate hemihydrate-based floor screeds. Journal of Building Engineering, 2021, 41, 102787.	1.6	2
15	Mechanochemical syngenite as hydration accelerator for anhydrite-based self-levelling floor screeds. Construction and Building Materials, 2021, 308, 124982.	3.2	5
16	Characterization data of reference industrial polycarboxylate superplasticizer VP 2020/15.2 used for Priority Program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials― Data in Brief, 2021, 39, 107657.	0.5	2
17	Dispersing effectiveness of a phosphated polycarboxylate in α- and β-calcium sulfate hemihydrate systems. Construction and Building Materials, 2020, 237, 117731.	3.2	18
18	Non-adsorbing small molecules as auxiliary dispersants for polycarboxylate superplasticizers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124307.	2.3	27

#	Article	IF	CITATIONS
19	Adsorbed layer thickness of polycarboxylate and polyphosphate superplasticizers on polystyrene nanoparticles measured via dynamic light scattering. Journal of Colloid and Interface Science, 2020, 562, 204-212.	5.0	22
20	Impact of the drilling fluid system on the effectiveness of a high pressure jetting assisted rotary drilling system. Heliyon, 2020, 6, e04179.	1.4	3
21	Î ² -Naphthalene sulfonate formaldehyde-based nanocomposites as new seeding materials for Portland cement. Construction and Building Materials, 2020, 264, 120240.	3.2	11
22	Preparation and effectiveness of a high-temperature anti-settling agent for well cement slurries. Journal of Natural Gas Science and Engineering, 2020, 81, 103416.	2.1	12
23	Blending of mining wastes from the Hammam Zriba mine (Northeast Tunisia) with the primary ingredients of clinkers: an evaluation of effects on gray Portland clinker properties. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	1
24	Templating effect of alginate and related biopolymers as hydration accelerators for calcium alumina cement - A mechanistic study. Materials and Design, 2020, 195, 109054.	3.3	7
25	Dispersing performance of different kinds of polycarboxylate (PCE) superplasticizers in cement blended with a calcined clay. Construction and Building Materials, 2020, 258, 119576.	3.2	32
26	Effect of non-ionic auxiliary dispersants on the rheological properties of mortars and concretes of low water-to-cement ratio. Construction and Building Materials, 2020, 259, 119780.	3.2	5
27	Identification of Specific Structural Motifs in Biopolymers That Effectively Accelerate Calcium Alumina Cement. Industrial & Engineering Chemistry Research, 2020, 59, 11930-11939.	1.8	5
28	The effect of alginates on the hydration of calcium aluminate cement. Carbohydrate Polymers, 2020, 236, 116038.	5.1	27
29	Impact of different pH-values of polycarboxylate (PCE) superplasticizer solutions on their dispersing effectiveness. Construction and Building Materials, 2020, 246, 118440.	3.2	9
30	The Role of Chemical Admixtures in the Formulation of Modern Advanced Concrete. RILEM Bookseries, 2020, , 143-157.	0.2	6
31	Impact of aging on the hydration of tricalcium aluminate (C ₃ A)/gypsum blends and the effectiveness of retarding admixtures. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 739-753.	0.3	6
32	Interaction of Superplasticizers with Cement from the Point of View of Colloid Chemistry. RILEM Bookseries, 2020, , 134-141.	0.2	2
33	Investigation on the optimal chemical structure of methacrylate ester based polycarboxylate superplasticizers to be used as cement grinding aid under laboratory conditions: Effect of anionicity, side chain length and dosage on grinding efficiency, mortar workability and strength development.	3.2	15
34	Synthesis and Properties of a Polycarboxylate Superplasticizer with a Jellyfish-Like Structure Comprising Hyperbranched Polyglycerols. Industrial & Engineering Chemistry Research, 2019, 58, 12913-12926.	1.8	42
35	An improved test protocol for high temperature carrying capacity of drilling fluids exemplified on a sepiolite mud. Journal of Natural Gas Science and Engineering, 2019, 70, 102964.	2.1	12
36	Surface phenomena related to applications regarding optimum dosages of casein superplasticizer in self-leveling underlayment cements. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2019, 74, 607-611.	0.3	3

Johann Plank

#	Article	IF	CITATIONS
37	C-S-H-PCE Nanofoils: A New Generation of Accelerators for Oil Well Cement. , 2019, , .		3
38	Impact of different synthesis methods on the dispersing effectiveness of isoprenol ether-based zwitterionic and anionic polycarboxylate (PCE) superplasticizers. Cement and Concrete Research, 2019, 119, 113-125.	4.6	32
39	Full-scale experimental investigation of the performance of a jet-assisted rotary drilling system in crystalline rock. International Journal of Rock Mechanics and Minings Sciences, 2019, 115, 87-98.	2.6	16
40	A spectroscopic study of the complexation reaction of trivalent lanthanides with a synthetic acrylate based PCE-superplasticizer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 270-275.	2.0	5
41	Adsorption of non-ionic cellulose ethers on cement revisited. Construction and Building Materials, 2019, 195, 441-449.	3.2	14
42	Evaluation of natural rubber latex as film forming additive in cementitious mortar. Construction and Building Materials, 2018, 169, 93-99.	3.2	41
43	Influence of <scp>PCE</scp> kind and dosage on ettringite crystallization performed under terrestrial and microgravity conditions. Journal of the American Ceramic Society, 2018, 101, 3575-3584.	1.9	23
44	Effectiveness of a calcium silicate hydrate – Polycarboxylate ether (C-S-H–PCE) nanocomposite on early strength development of fly ash cement. Construction and Building Materials, 2018, 169, 20-27.	3.2	82
45	A TEM study on the very early crystallization of C-S-H in the presence of polycarboxylate superplasticizers: Transformation from initial C-S-H globules to nanofoils. Cement and Concrete Research, 2018, 106, 33-39.	4.6	70
46	Template-assisted facile synthesis and characterization of hollow calcium silicate hydrate particles for use as reflective materials. Materials Research Bulletin, 2018, 97, 343-350.	2.7	12
47	A thermodynamical and structural study on the complexation of trivalent lanthanides with a polycarboxylate based concrete superplasticizer. Dalton Transactions, 2017, 46, 4093-4100.	1.6	9
48	Growth behavior of water dispersed MgAl layered double hydroxide nanosheets. RSC Advances, 2017, 7, 14989-14997.	1.7	13
49	Synthesis, Properties and HT Performance of a Novel Cement Fluid Loss Polymer Modified with Phosphate Groups. , 2017, , .		1
50	Effectiveness of Polycarboxylate Dispersants in Enhancing the Fluid Loss Performance of Cellulose Ethers. , 2017, , .		4
51	Preparation of magnesium oxide and magnesium silicate replicas retaining the hierarchical structure of pine wood. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 341-349.	0.3	3
52	Zementchemie in der Schwerelosigkeit. Nachrichten Aus Der Chemie, 2017, 65, 422-426.	0.0	0
53	Dispersing performance of superplasticizers admixed to aged cement. Construction and Building Materials, 2017, 139, 232-240.	3.2	18
54	Role of pH on the structure, composition and morphology of C-S-H–PCE nanocomposites and their effect on early strength development of Portland cement. Cement and Concrete Research, 2017, 102, 90-98.	4.6	128

#	Article	IF	CITATIONS
55	Temperature- and pH-Dependent Dispersion of Highly Purified Multiwalled Carbon Nanotubes Using Polycarboxylate-Based Surfactants in Aqueous Suspension. Journal of Physical Chemistry C, 2017, 121, 16903-16910.	1.5	16
56	Adsorbed Conformations of PCE Superplasticizers in Cement Pore Solution Unraveled by Molecular Dynamics Simulations. Scientific Reports, 2017, 7, 16599.	1.6	34
57	Atomistic dynamics simulation to solve conformation of model PCE superplasticisers in water and cement pore solution. Advances in Cement Research, 2017, 29, 418-428.	0.7	23
58	Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase. Journal of Materials Science, 2017, 52, 2296-2307.	1.7	49
59	Early Hydration of Portland Cement Admixed with Polycarboxylates Studied Under Terrestric and Microgravity Conditions. Journal of Advanced Concrete Technology, 2016, 14, 102-107.	0.8	7
60	Passive and active mechanical properties of biotemplated ceramics revisited. Bioinspiration and Biomimetics, 2016, 11, 065001.	1.5	6
61	Influence of temperature and moisture on the shelf-life of cement admixed with redispersible polymer powder. Construction and Building Materials, 2016, 115, 336-344.	3.2	11
62	Influence of electrolytes on the performance of a graft copolymer used as fluid loss additive in oil well cement. Journal of Petroleum Science and Engineering, 2016, 143, 86-94.	2.1	17
63	An ITC Study on the Interaction Energy Between Galactomannan Biopolymers and Selected MO ₂ Nanoparticles in Hydrogels. ChemistrySelect, 2016, 1, 1804-1809.	0.7	3
64	Production and characterization of hierarchical porous silica made using natural rubber as template: Effects of the template removal methods, the pH of production, and the natural rubber sources. Chemical Engineering Research and Design, 2016, 113, 273-283.	2.7	11
65	Synthesis, characterization and performance of a novel phosphate-modified fluid loss additive useful in oil well cementing. Journal of Natural Gas Science and Engineering, 2016, 36, 165-174.	2.1	23
66	Impact of different types of polycarboxylate superplasticisers on spontaneous crystallisation of ettringite. Advances in Cement Research, 2016, 28, 310-319.	0.7	27
67	Crystal growth of [Ca3Al(OH)6·12H2O]2·(SO4)3·2H2O (ettringite) under microgravity: On the impact of anionicity of polycarboxylate comb polymers. Journal of Crystal Growth, 2016, 446, 92-102.	0.7	28
68	Impact of welan gum stabilizer on the dispersing performance of polycarboxylate superplasticizers. Cement and Concrete Research, 2016, 82, 100-106.	4.6	29
69	A microstructural analysis of isoprenol ether-based polycarboxylates and the impact of structural motifs on the dispersing effectiveness. Cement and Concrete Research, 2016, 84, 20-29.	4.6	61
70	A novel kind of concrete superplasticizer based on lignite graft copolymers. Cement and Concrete Research, 2016, 79, 123-130.	4.6	31
71	Contribution of non-adsorbing polymers to cement dispersion. Cement and Concrete Research, 2016, 79, 131-136.	4.6	66
72	Effect of biotechnologically modified alginates on LDH structures. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 174-186.	0.7	6

#	Article	IF	CITATIONS
73	Optimization of comb-shaped polycarboxylate cement dispersants to achieve fast-flowing mortar and concrete. Journal of Applied Polymer Science, 2015, 132, n/a-n/a.	1.3	27
74	Formation of Nano-Sized Ettringite Crystals Identified as Root Cause for Cement Incompatibility of PCE Superplasticizers. , 2015, , 55-63.		9
75	Early hydration of Portland cement studied under microgravity conditions. Construction and Building Materials, 2015, 93, 877-883.	3.2	23
76	Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDH structure. Journal of Physics and Chemistry of Solids, 2015, 80, 112-117.	1.9	11
77	Behavior of Titania Nanoparticles in Cross-linking Hydroxypropyl Guar Used in Hydraulic Fracturing Fluids For Oil Recovery. Energy & Fuels, 2015, 29, 3601-3608.	2.5	65
78	Impact of carboxylated styrene–butadiene copolymer on the hydration kinetics of OPC and OPC/CAC/AH: The effect of Ca2+ sequestration from pore solution. Cement and Concrete Research, 2015, 73, 184-189.	4.6	22
79	Influence of carboxylated styrene–butadiene latex copolymer on Portland cement hydration. Cement and Concrete Composites, 2015, 63, 42-50.	4.6	38
80	New insights into physicochemical interactions occurring between polycarboxylate superplasticizers and a stabilizer in self-compacting concrete. Journal of Sustainable Cement-Based Materials, 2015, 4, 164-175.	1.7	6
81	Intercalation of cellulase enzyme into a hydrotalcite layer structure. Journal of Physics and Chemistry of Solids, 2015, 76, 34-39.	1.9	6
82	Preparation and Properties of a Graphene Oxide Intercalation Compound Utilizing Hydrocalumite Layered Double Hydroxide as Host Structure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1413-1419.	0.6	6
83	Impact of Temperature on the Solution Conformation and Performance of AMPS [®] - and AHPS-based Fluid Loss Polymers in Oil Well Cement. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 1131-1140.	0.3	6
84	Impact of environmental moisture on C ₃ A polymorphs in the absence and presence of CaSO ₄ · O·5 H ₂ O. Advances in Cement Research, 2014, 26, 29-40.	0.7	19
85	Formation of organo-mineral phases at early addition of superplasticizers: The role of alkali sulfates and C3A content. Cement and Concrete Research, 2014, 59, 112-117.	4.6	35
86	Influence of anti-caking agent kaolin on film formation of ethylene–vinylacetate and carboxylated styrene–butadiene latex polymers. Cement and Concrete Research, 2014, 58, 112-120.	4.6	26
87	Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete. Cement and Concrete Research, 2014, 60, 45-50.	4.6	83
88	Synthesis and Properties of a Vinyl Ether-Based Polycarboxylate Superplasticizer for Concrete Possessing Clay Tolerance. Industrial & Engineering Chemistry Research, 2014, 53, 1048-1055.	1.8	93
89	Study of the interaction between cement phases and polycarboxylate superplasticizers possessing silyl functionalities. Journal of Sustainable Cement-Based Materials, 2014, 3, 77-87.	1.7	11
90	On the role of colloidal crystal-like domains in the film forming process of a carboxylated styrene-butadiene latex copolymer. Progress in Organic Coatings, 2014, 77, 685-690.	1.9	13

#	Article	IF	CITATIONS
91	Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions. Journal of Colloid and Interface Science, 2014, 419, 17-24.	5.0	32
92	Determination of the adsorbed layer thickness of functional anionic polymers utilizing chemically modified polystyrene nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456, 139-145.	2.3	28
93	Microcapsules prepared from a polycondensateâ€based cement dispersant via layerâ€byâ€layer selfâ€assembly on melamineâ€formaldehyde core templates. Journal of Applied Polymer Science, 2013, 127, 3705-3711.	1.3	17
94	Synthesis, characterization, and working mechanism of a synthetic high temperature (200°C) fluid loss polymer for oil well cementing containing allyloxyâ€2â€hydroxy propane sulfonic (AHPS) acid monomer. Journal of Applied Polymer Science, 2013, 128, 851-860.	1.3	37
95	Mineralisation of CaCO3 in the presence of polycarboxylate comb polymers. Cement and Concrete Research, 2013, 54, 1-11.	4.6	20
96	Water retention capacity and working mechanism of methyl hydroxypropyl cellulose (MHPC) in gypsum plaster — Which impact has sulfate?. Cement and Concrete Research, 2013, 46, 66-72.	4.6	37
97	A Review of Synergistic and Antagonistic Effects Between Oilwell-Cement Additives. SPE Drilling and Completion, 2013, 28, 398-404.	0.9	16
98	Influence of type of superplasticizer and cement composition on the adhesive bonding between aged and fresh concrete. Construction and Building Materials, 2013, 48, 717-724.	3.2	16
99	Occurrence of intercalation of PCE superplasticizers in calcium aluminate cement under actual application conditions, as evidenced by SAXS analysis. Cement and Concrete Research, 2013, 54, 191-198.	4.6	25
100	Synthesis and performance of a modified polycarboxylate dispersant for concrete possessing enhanced cement compatibility. Journal of Applied Polymer Science, 2013, 129, 346-353.	1.3	39
101	Effect of heat treatment on the dispersion performance of casein superplasticizer used in dry-mix mortar. Cement and Concrete Research, 2013, 51, 1-5.	4.6	14
102	Preparation and properties of a dispersing fluid loss additive based on humic acid graft copolymer suitable for cementing high temperature (200°C) oil wells. Journal of Applied Polymer Science, 2013, 129, 2544-2553.	1.3	38
103	Synthesis and properties of magnesium carbonate xerogels and aerogels. Journal of Non-Crystalline Solids, 2013, 361, 100-105.	1.5	17
104	Fractionated and Recombined Casein Superplasticizer in Self-Leveling Underlayments. Advanced Materials Research, 2013, 687, 443-448.	0.3	4
105	Role of PVOH and kaolin on colloidal stability of liquid and powder EVA and SB latexes in cement pore solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 145-153.	2.3	24
106	Preparation of CaCO ₃ and CaO Replicas Retaining the Hierarchical Structure of SpruceWood. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 533-538.	0.3	8
107	Novel Core-Shell Hybrid Polymers Designed as Dual Functional Additives for Concrete. Advanced Materials Research, 2013, 687, 77-83.	0.3	0
108	Mechanistic study on the effect of sulfate ions on polycarboxylate superplasticisers in cement. Advances in Cement Research, 2013, 25, 200-207.	0.7	32

#	Article	IF	CITATIONS
109	Effect of Ca ²⁺ lons on the Film Formation of an Anionic Styrene/n-Butylacrylate Latexpolymer in Cement Pore Solution. Advanced Materials Research, 2013, 687, 322-328.	0.3	6
110	The effect of prehydration on the engineering properties of CEM I Portland cement. Advances in Cement Research, 2013, 25, 12-20.	0.7	26
111	Chemistry and water-repelling properties of phenyl-incorporating wood composites. Holzforschung, 2013, 67, 931-940.	0.9	7
112	Polymorphs of molybdenum trioxide as innovative antimicrobial materials. Surface Innovations, 2013, 1, 202-208.	1.4	17
113	Working mechanism of a high temperature (200°C) synthetic cement retarder and its interaction with an AMPS®â€based fluid loss polymer in oil well cement. Journal of Applied Polymer Science, 2012, 124, 4772-4781.	1.3	27
114	Photodegradation of Rhodamine B in Presence of CaO and NiO-CaO Catalysts. International Journal of Photoenergy, 2012, 2012, 1-6.	1.4	19
115	Intercalation of the Microbial Biopolymers Welan Gum and EPS I into Layered Double Hydroxides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 479-487.	0.3	6
116	Re-association Behavior of Casein Submicelles in Highly Alkaline Environments. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 621-630.	0.3	7
117	A mechanistic study explaining the synergistic viscosity increase obtained from polyethylene oxide (PEO) and β-naphthalene sulfonate (BNS) in shotcrete. Cement and Concrete Research, 2012, 42, 1409-1416.	4.6	27
118	Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cement and Concrete Research, 2012, 42, 1401-1408.	4.6	132
119	Intercalation of Sulfanilic Acid-Phenol-Formaldehyde Polycondensate into Hydrocalumite Type Layered Double ÂHydroxide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, n/a-n/a.	0.6	1
120	Role of colloidal polymer associates for the effectiveness of hydroxyethyl cellulose as a fluid loss control additive in oil well cement. Journal of Applied Polymer Science, 2012, 126, E25.	1.3	40
121	Synthesis, effectiveness, and working mechanism of humic acidâ€{sodium 2â€acrylamidoâ€2â€methylpropane sulfonate <i>â€co</i> â€coâ€coâ€to>/i>â€ <i>N,N</i> â€dimethyl acrylamideâ€ <i>co</i> â€acrylic acid} graft copolymer as highâ€temperature fluid loss additive in oil well cementing. Journal of Applied Polymer Science, 2012,	1.3	31
122	Surface Chemistry of Ground Granulated Blast Furnace Slag in Cement Pore Solution and Its Impact on the Effectiveness of Polycarboxylate Superplasticizers. Journal of the American Ceramic Society, 2012, 95, 768-775.	1.9	44
123	Study on the foaming behaviour of allyl ether-based polycarboxylate superplasticizers. Cement and Concrete Research, 2012, 42, 484-489.	4.6	44
124	Study of the retarding mechanism of linear sodium polyphosphates on α-calcium sulfate hemihydrate. Cement and Concrete Research, 2012, 42, 736-744.	4.6	47
125	Combination of lignosulfonate and AMPS®-co-NNDMA water retention agent—An example for dual synergistic interaction between admixtures in cement. Cement and Concrete Research, 2012, 42, 728-735.	4.6	52
126	Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cement and Concrete Research, 2012, 42, 847-854.	4.6	164

#	Article	IF	CITATIONS
127	Characterization of Polycarboxylateâ€Ether Based Superplasticizer on Cement Clinker Surfaces. Journal of the American Ceramic Society, 2012, 95, 2189-2195.	1.9	34
128	Mechanistic study on carboxymethyl hydroxyethyl cellulose as fluid loss control additive in oil well cement. Journal of Applied Polymer Science, 2012, 124, 2340-2347.	1.3	44
129	Adsorption of Polyelectrolytes on Calcium Carbonate – Which Thermodynamic Parameters are Driving This Process?. Journal of the American Ceramic Society, 2011, 94, 3515-3522.	1.9	35
130	Crystal Structure, Synthesis, and Properties of <i>tri</i> â€Calcium <i>di</i> â€Citrate <i>tetra</i> â€Hydrate [Ca ₃ (C ₆ H ₅ O ₇) ₂ (H ₂ O) _{2< Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 655-659.}	/sub o.] &.2H	l <sub>2</s
131	Polyelectrolyte complexes from polyethylene imine/acetone formaldehyde sulfite polycondensates: A novel reagent for effective fluid loss control of oil well cement slurries. Journal of Applied Polymer Science, 2011, 121, 1262-1275.	1.3	17
132	Effect of high temperature and the role of sulfate on adsorption behavior and effectiveness of AMPS®â€based cement fluid loss polymers. Journal of Applied Polymer Science, 2011, 121, 1086-1095.	1.3	14
133	An ESEM investigation of latex film formation in cement pore solution. Cement and Concrete Research, 2011, 41, 184-190.	4.6	46
134	Impact of the steric position of phosphonate groups in poly(N,N-dimethylacrylamide-co-2-acrylamido-2-methylpropanesulfonate-co-2-X-phosphonate) on its adsorbed conformation on cement: Comparison of vinylphosphonic acid and 2-acrylamido-2-methylpropanephos. Journal of Applied Polymer Science, 2010, 115, 1758-1768.	1,3	7
135	Competitive adsorption between an AMPS®â€based fluid loss polymer and Welan gum biopolymer in oil well cement. Journal of Applied Polymer Science, 2010, 116, 2913-2919.	1.3	38
136	Working mechanism of poly(vinyl alcohol) cement fluid loss additive. Journal of Applied Polymer Science, 2010, 117, 2290-2298.	1.3	16
137	Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements. Journal of Colloid and Interface Science, 2010, 347, 15-24.	5.0	198
138	Self-assembly and characterization of Ca–Al–LDH nanohybrids containing casein proteins as guest anions. Journal of Physics and Chemistry of Solids, 2010, 71, 468-472.	1.9	45
139	Fundamental mechanisms for polycarboxylate intercalation into C3A hydrate phases and the role of sulfate present in cement. Cement and Concrete Research, 2010, 40, 45-57.	4.6	160
140	Hybrid additives for construction applications, fabricated through layer-by-layer adsorption of polycondensate type superplasticizers on latex templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366, 38-44.	2.3	19
141	Formation of an Inorganic-Organic Host-Guest Material by Intercalation of Acetone Formaldehyde Sulfite Polycondensate into a Hydrocalumite Structure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1533-1537.	0.6	5
142	Interaction Between Polycarboxylate Superplasticizers and Amorphous Ground Granulated Blast Furnace Slag. Journal of the American Ceramic Society, 2010, 93, 2857-2863.	1.9	43
143	Ca ²⁺ â€Mediated Interaction Between Microsilica and Polycarboxylate Comb Polymers in a Model Cement Pore Solution. Journal of the American Ceramic Society, 2010, 93, 3493-3498.	1.9	26
144	Preparation of hydrocalumite-based nanocomposites using polycarboxylate comb polymers possessing high grafting density as interlayer spacers. Applied Clay Science, 2010, 47, 378-383.	2.6	28

#	Article	IF	CITATIONS
145	Preparation and Characterization of a Calcium Carbonate Aerogel. Research Letters in Materials Science, 2009, 2009, 1-3.	0.2	5
146	Modification of the molar anionic charge density of acetone–formaldehyde–sulfite dispersant to improve adsorption behavior and effectiveness in the presence of CaAMPS®â€∢i>coâ€NNDMA cement fluid loss polymer. Journal of Applied Polymer Science, 2009, 111, 2018-2024.	1.3	29
147	Comparative Study of the Working Mechanisms of Different Cement Fluid Loss Polymers. , 2009, , .		14
148	Effectiveness of Polycarboxylate Superplasticizers in Ultra-High Strength Concrete: The Importance of PCE Compatibility with Silica Fume. Journal of Advanced Concrete Technology, 2009, 7, 5-12.	0.8	170
149	Novel hybrid materials obtained by intercalation of organic comb polymers into Ca–Al–LDH. Journal of Physics and Chemistry of Solids, 2008, 69, 1048-1051.	1.9	19
150	Gram scale separation of casein proteins from whole casein on a Source 30Q anion-exchange resin column utilizing fast protein liquid chromatography (FPLC). Protein Expression and Purification, 2008, 60, 176-181.	0.6	19
151	Adsorption of Carboxylate Anions on a CaCO ₃ Surface. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2007, 62, 1277-1284.	0.3	38
152	Effect of different anchor groups on adsorption behavior and effectiveness of poly(<i>N</i> , <i>N</i> â€dimethylacrylamideâ€ <i>co</i> â€Ca 2â€acrylamidoâ€2â€methylpropanesulfonate) as fluid loss additive in presence of acetone–formaldehyde–sulfite dispersant. Journal of Applied Polymer Science, 2007, 106, 3889-3894.	cement 1.3	68
153	Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cement and Concrete Research, 2007, 37, 537-542.	4.6	466
154	Impact of Molecular Structure on Zeta Potential and Adsorbed Conformation of .ALPHAAllylOMEGAMethoxypolyethylene Glycol-Maleic Anhydride Superplasticizers. Journal of Advanced Concrete Technology, 2006, 4, 233-239.	0.8	107
155	Novel organo-mineral phases obtained by intercalation of maleic anhydride–allyl ether copolymers into layered calcium aluminum hydrates. Inorganica Chimica Acta, 2006, 359, 4901-4908.	1.2	40
156	Adsorption behavior and effectiveness of poly(N,N-dimethylacrylamide-co-Ca) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 307 To	d (2-acrylami
150	acetone-formaldehyde-sulfite dispersant. Journal of Applied Polymer Science, 2006, 102, 4341-4347.	1,0	/1
157	Applications of biopolymers and other biotechnological products in building materials. Applied Microbiology and Biotechnology, 2004, 66, 1-9.	1.7	218
158	Retardation of setting of plaster of Paris by organic acids: Understanding the mechanism through molecular modeling. Journal of Computational Chemistry, 2004, 25, 1438-1448.	1.5	42
159	Aœbergangsmetall-Methylen-Komplexe, LI [1]. Carbocyclische Carbene, Carben-BrA4/4cken, kleine Kohlenwasserstoff-Liganden und Metallacyclen: Beispiele einer umfassenden Synthesekonzeption / Transition Metal Methylene Complexes, LI [1]. Carbocyclic Carbenes, Carbene Bridges, Small Hydrocarbon Ligands, and Metallacycles: Examples of a General Synthetic Concept. Zeitschrift Fur	0.3	18
160	Naturiorschung - Section B journal of Unemical Sciences, 1983, 38, 1392-1398. Transition-metal methylene complexes. 14. Reactions of an electron-rich dimetallacyclopropane with protic acids: synthesis and x-ray crystal structures of novel rhodium-methyl and -methylidyne complexes. Journal of the American Chemical Society, 1981, 103, 63-75.	6.6	67
161	Carbenâ€Addition an reaktive Metallâ€Metallâ€Bindungen – ein einfaches Syntheseprinzip für μâ€Methylenâ€Komplexe. Angewandte Chemie, 1981, 93, 212-214.	1.6	26
162	Addition of Carbenes to Reactive Metal-Metal Bonds—A Simple Synthetic Method forμ-Methylene Complexes. Angewandte Chemie International Edition in English, 1981, 20, 193-196.	4.4	34

Johann Plank

#	Article	IF	CITATIONS
163	Synthese und MoleRA-/4Istruktur der dreikernigen Cluster-Verbindung (Î- ⁵ C ₅ Me ₅)IrFe ₂ (CO) ₉ / Synthesis and Molecular Structure of the Trinuclear Cluster Compound (Î- ^{5/cCO)₉. Zeitschrift Fur}	0.3	9
164	Uebergangsmetall—methylen-komplexe. Journal of Organometallic Chemistry, 1980, 190, C47-C50.	0.8	18
165	Synthesis of the First Methylidyne-Rhodium Cluster by Proton-Induced H2/CH4-Elimination from al¼-Methylene Complex. Angewandte Chemie International Edition in English, 1980, 19, 651-653.	4.4	15
166	A Simple Method of Forming Metal-to-Metal Bonds. Angewandte Chemie International Edition in English, 1980, 19, 937-938. Acchergangsmetal-Methylen-Komplexe, X [1] Methylen-und Alkyl-Fisen-Komplexe aus Diazoalkanen.	4.4	21
167	MolekĂ¼lstruktur von μ-Carbonyl-μ-tert-butoxycarbonyl-methylen- bis [carbonyl(Î-sup>5) Tj ETQq1 Complexes from Diazoalkanes. Molecular Structure of μ-Carbonyl-μ-tert-butoxycarbonyl-methylene- bis[carbonyl(Î-sup>5-cyclopentadienyl)iron] (Fe-Fe). Zeitschrift Fur Naturforschung - Section B	1 0.784314 0.3	rgBT /Overic 19
168	Transition metal methylene complexes. 13. Proton-induced ring opening of a dimetallacyclopropane-type .mumethylene-rhodium compound. A straightforward novel route to halo(methyl) complexes. Journal of the American Chemical Society, 1980, 102, 5906-5908.	6.6	37
169	Complex chemistry of reactive organic compounds. 28. Carbene addition to metal carbonyls - a novel reaction in organometallic chemistry. Direct synthesis of .eta.2-ketene complexes from diazoalkanes. Journal of the American Chemical Society, 1979, 101, 3133-3135.	6.6	52
170	High-Pressure Carbonylation of Metal-Coordinated Carbenes and Hydrogenolysis of the Ketene Complexes. Angewandte Chemie International Edition in English, 1978, 17, 525-526.	4.4	42
171	Synthesis of Carbocyclic Carbene Complexes by Metal-Induced Diazocyclopentadiene Fragmentation. Angewandte Chemie International Edition in English, 1978, 17, 777-778.	4.4	16
172	Film Formation of a Non-Ionic Ethylene-Vinyl Acetate Latex Dispersion in Cement Pore Solution. Advanced Materials Research, 0, 687, 316-321.	0.3	6