Jana Stankova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of platelet-activating factor-mediated interleukin-6 promoter activation by the 48ÂkDa but not the 45ÂkDa isoform of protein tyrosine phosphatase non-receptor type 2. Cell and Bioscience, 2019, 9, 51.	4.8	10
2	Measuring GPCR-Induced Activation of Protein Tyrosine Phosphatases (PTP) Using In-Gel and Colorimetric PTP Assays. Methods in Molecular Biology, 2019, 1947, 241-256.	0.9	2
3	Regulation of platelet-activating factor-induced interleukin-8 expression by protein tyrosine phosphatase 1B. Cell Communication and Signaling, 2019, 17, 21.	6.5	8
4	Role of Protein Tyrosine Phosphatase Epsilon (PTPε) in Leukotriene D4-Induced CXCL8 Expression. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 270-281.	2.5	2
5	<code>RPTPlu</code> promotes M2-polarized macrophage migration through <code>ROCKII</code> signaling and <code>podosome</code> formation. Journal of Cell Science, 2019, 133, .	2.0	5
6	IL-33 Upregulates Cysteinyl Leukotriene Receptor Type 1 Expression in Human Peripheral Blood CD4+ T Lymphocytes. Journal of Immunology, 2018, 201, 2787-2798.	0.8	8
7	Constitutively active Stat5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. Journal of Autoimmunity, 2017, 76, 63-74.	6.5	9
8	Regulation of platelet-activating factor-mediated protein tyrosine phosphatase 1B activation by a Janus kinase 2/calpain pathway. PLoS ONE, 2017, 12, e0180336.	2.5	6
9	Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies. Frontiers in Pharmacology, 2016, 7, 299.	3.5	28
10	Cellular signalling of cysteinyl leukotriene type 1 receptor variants CysLT1-G300S and CysLT1-l206S. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 105, 1-8.	2.2	3
11	Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues. PLoS ONE, 2016, 11, e0162995.	2.5	36
12	Differential Contribution of BLT ₁ and BLT ₂ to Leukotriene B ₄ -Induced Human NK Cell Cytotoxicity and Migration. Mediators of Inflammation, 2015, 2015, 1-13.	3.0	7
13	Enhanced Cysteinyl-Leukotriene Type 1 Receptor Expression in T Cells from House Dust Mite-Allergic Individuals following Stimulation with Der p. Journal of Immunology Research, 2015, 2015, 1-11.	2.2	5
14	Platelet-Activating Factor Induces Du-al-Specificity Phosphatase 1 and 5 Gene Expression. Pharmacology & Pharmacy, 2015, 06, 442-450.	0.7	2
15	Rescue of internalization-defective platelet-activating factor receptor function by EBP50/NHERF1. Journal of Cell Communication and Signaling, 2012, 6, 205-216.	3.4	5
16	Functional variants of the cysteinyl leukotriene 1 and cysteinyl leukotriene 2 receptors are associated with atopic asthma. FASEB Journal, 2012, 26, lb555.	0.5	0
17	Differential Signaling Defects Associated with the M201V Polymorphism in the Cysteinyl Leukotriene Type 2 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 431-439.	2.5	10
18	Platelet-Activating Factor Induces Th17 Cell Differentiation. Mediators of Inflammation, 2011, 2011, 1-12.	3.0	18

JANA STANKOVA

#	Article	IF	CITATIONS
19	Caveolae Facilitate but Are Not Essential for Platelet-Activating Factor-Mediated Calcium Mobilization and Extracellular Signal-Regulated Kinase Activation. Journal of Immunology, 2009, 183, 2747-2757.	0.8	12
20	Cysteinyl-Leukotriene Receptor Type 1 Expression and Function Is Down-Regulated during Monocyte-Derived Dendritic Cell Maturation with Zymosan: Involvement of IL-10 and Prostaglandins. Journal of Immunology, 2009, 183, 6778-6787.	0.8	16
21	Signaling by the Cysteinyl-Leukotriene Receptor 2. Journal of Biological Chemistry, 2008, 283, 1974-1984.	3.4	27
22	Cytokine-Leukotriene Receptor Interactions. Scientific World Journal, The, 2007, 7, 1348-1358.	2.1	12
23	Leukotriene D4 enhances immunoglobulin production in CD40-activated human B lymphocytes. Journal of Allergy and Clinical Immunology, 2006, 117, 924-930.	2.9	38
24	Toll-like receptor agonists differentially regulate cysteinyl-leukotriene receptor 1 expression and function in human dendritic cells. Journal of Allergy and Clinical Immunology, 2006, 117, 1155-1162.	2.9	45
25	The anti-apoptotic effect of leukotriene B4 in neutrophils: A role for phosphatidylinositol 3-kinase, extracellular signal-regulated kinase and Mcl-1. Cellular Signalling, 2006, 18, 479-487.	3.6	31
26	CysLT1 Receptor Engagement Induces Activator Protein-1– and NF-κB–Dependent IL-8 Expression. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 697-704.	2.9	52
27	Structural Determinants Regulating Expression of the High Affinity Leukotriene B4 Receptor. Journal of Biological Chemistry, 2004, 279, 10338-10345.	3.4	26
28	Activation of ERK1/2 by platelet-activating factor receptor is independent of receptor internalisation and G-protein activation. Cellular Signalling, 2003, 15, 843-850.	3.6	16
29	Platelet-activating factor receptor: differential regulation and signaling by agonists and inverse agonists. International Congress Series, 2003, 1249, 185-194.	0.2	0
30	CysLT1 receptor upregulation by TGF-Î ² and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. Journal of Allergy and Clinical Immunology, 2003, 111, 1032-1040.	2.9	174
31	Trafficking, Ubiquitination, and Down-regulation of the Human Platelet-activating Factor Receptor. Journal of Biological Chemistry, 2003, 278, 48228-48235.	3.4	71
32	Agonist-independent Desensitization and Internalization of the Human Platelet-activating Factor Receptor by Coumermycin-Gyrase B-induced Dimerization. Journal of Biological Chemistry, 2003, 278, 27956-27965.	3.4	23
33	Janus Kinase 2 Activation by the Platelet-Activating Factor Receptor (PAFR): Roles of Tyk2 and PAFR C Terminus. Journal of Immunology, 2003, 171, 3794-3800.	0.8	32
34	Agonist-induced Internalization of the Platelet-activating Factor Receptor Is Dependent on Arrestins but Independent of G-protein Activation. Journal of Biological Chemistry, 2002, 277, 7356-7362.	3.4	47
35	Modulation of Leukotriene B4 Receptor-1 Expression by Dexamethasone: Potential Mechanism for Enhanced Neutrophil Survival. Journal of Immunology, 2002, 168, 3570-3576.	0.8	54
36	IL-13 and IL-4 Up-Regulate Cysteinyl Leukotriene 1 Receptor Expression in Human Monocytes and Macrophages. Journal of Immunology, 2001, 167, 2855-2860.	0.8	151

JANA STANKOVA

#	Article	IF	CITATIONS
37	G-protein-independent Activation of Tyk2 by the Platelet-activating Factor Receptor. Journal of Biological Chemistry, 2001, 276, 24113-24121.	3.4	54
38	IL-5 Up-Regulates Cysteinyl Leukotriene 1 Receptor Expression in HL-60 Cells Differentiated into Eosinophils. Journal of Immunology, 2000, 165, 5221-5226.	0.8	74
39	Expression of Platelet-Activating Factor Receptor in Human Carotid Atherosclerotic Plaques. Circulation, 2000, 102, 2569-2575.	1.6	37
40	Selective Modulation of Wild Type Receptor Functions by Mutants of G-Protein-coupled Receptors. Journal of Biological Chemistry, 1999, 274, 12548-12554.	3.4	52
41	IL-10 up-regulates CCR5 gene expression in human monocytes. Cellular and Molecular Neurobiology, 1998, 18, 683-694.	3.3	48
42	Signalling through the leukotriene B4 receptor involves both αi and α16, but not αq or α11 G-protein subunits. Biochemical Journal, 1998, 335, 15-18.	3.7	57
43	Structural and Functional Requirements for Agonist-induced Internalization of the Human Platelet-activating Factor Receptor. Journal of Biological Chemistry, 1997, 272, 21289-21295.	3.4	58
44	Augmented expression of platelet-activating factor receptor gene by TNF-α through transcriptional activation in human monocytes. Journal of Leukocyte Biology, 1997, 61, 106-112.	3.3	15
45	Role of the Cys90 , Cys95 and Cys173 residues in the structure and function of the human platelet-activating factor receptor. FEBS Letters, 1997, 402, 203-208.	2.8	18
46	Platelet-activating factor stimulates interleukin-6 production by human endothelial cells and synergizes with tumor necrosis factor for enhanced production of granulocyte-macrophage colony stimulating factor. Inflammation, 1997, 21, 145-158.	3.8	23
47	Differential Signaling Pathways in Platelet-Activating Factor-Induced Proliferation and Interleukin-6 Production by Rat Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 1997, 30, 169-175.	1.9	37
48	Mutation of an Aspartate at Position 63 in the Human Platelet-Activating Factor Receptor Augments Binding Affinity but Abolishes G-Protein-Coupling and Inositol Phosphate Production1. Biochemical and Biophysical Research Communications, 1996, 219, 968-975.	2.1	27
49	Natural killer and lectin-dependent cytotoxic activities of kurloff cells: Target cell selectivity, conjugate formation, and Ca++ dependency. Inflammation, 1996, 20, 647-671.	3.8	12
50	Mutations of Two Adjacent Amino Acids Generate Inactive and Constitutively Active Forms of the Human Platelet-activating Factor Receptor. Journal of Biological Chemistry, 1996, 271, 7949-7955.	3.4	31
51	Identification of Transmembrane Domain Residues Determinant in the Structure-Function Relationship of the Human Platelet-activating Factor Receptor by Site-directed Mutagenesis. Journal of Biological Chemistry, 1996, 271, 23298-23303.	3.4	27
52	PAF activation of a voltageâ€gated Râ€type Ca ²⁺ channel in human and canine aortic endothelial cells. British Journal of Pharmacology, 1993, 110, 519-520.	5.4	47
53	Differentiation-dependent modulation of TNF production by PAF in human HL-60 myeloid leukemia cells. Journal of Leukocyte Biology, 1992, 51, 609-616.	3.3	13
54	Fucose-activated killer cells. I. Enhanced TNF-α mRNA accumulation and protein production. Journal of Leukocyte Biology, 1992, 52, 188-196.	3.3	4