
Massimo Alioto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-Memory Unified TRNG and Multi-Bit PUF for Ubiquitous Hardware Security. IEEE Journal of Solid-State Circuits, 2022, 57, 153-166.	5.4	18
2	Editorial Opening of the 2022 TVLSI Editorial Year—Connecting Trends From Society to VLSI Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 1-4.	3.1	1
3	STT-BNN: A Novel STT-MRAM In-Memory Computing Macro for Binary Neural Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 569-579.	3.6	22
4	Sub-nW Microcontroller With Dual-Mode Logic and Self-Startup for Battery-Indifferent Sensor Nodes. IEEE Journal of Solid-State Circuits, 2021, 56, 1618-1629.	5.4	12
5	On-Chip Links With Energy-Quality Tradeoff in Error-Resilient and Machine Learning Applications. IEEE Journal of Solid-State Circuits, 2021, , 1-1.	5.4	0
6	Rail-to-Rail Dynamic Voltage Comparator Scalable Down to pW-Range Power and 0.15-V Supply. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2675-2679.	3.0	17
7	Opening of the 2021 Editorial Year—Overture for a New Year of Change. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1-2.	3.1	2
8	A Robust, High-Speed and Energy-Efficient Ultralow-Voltage Level Shifter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1393-1397.	3.0	13
9	STT-MRAM Architecture with Parallel Accumulator for In-Memory Binary Neural Networks. , 2021, , .		5
10	Second Quarter of the 2021 Editorial Year—A Year in Crescendo. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 815-842.	3.1	1
11	PUF Architecture with Run-Time Adaptation for Resilient and Energy-Efficient Key Generation via Sensor Fusion. IEEE Journal of Solid-State Circuits, 2021, 56, 2182-2192.	5.4	10
12	Design of Digital OTAs With Operation Down to 0.3 V and nW Power for Direct Harvesting. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 3693-3706.	5.4	29
13	A 300mV-Supply, Sub-nW-Power Digital-Based Operational Transconductance Amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3073-3077.	3.0	16
14	A 0.6-to-1.8V CMOS Current Reference With Near-100% Power Utilization. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3038-3042.	3.0	11
15	±CIM SRAM for Signed In-Memory Broad-Purpose Computing From DSP to Neural Processing. IEEE Journal of Solid-State Circuits, 2021, 56, 2981-2992.	5.4	18
16	Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW. IEEE Journal of Solid-State Circuits, 2021, 56, 3134-3144.	5.4	27
17	From Less Batteries to Battery-Less Alert Systems with Wide Power Adaptation down to nWs—Toward a Smarter, Greener World. IEEE Design and Test, 2021, 38, 90-133.	1.2	19
18	Fully Synthesizable Unified True Random Number Generator and Cryptographic Core. IEEE Journal of Solid-State Circuits, 2021, 56, 3049-3061.	5.4	10

#	Article	IF	CITATIONS
19	A 3.2-pW, 0.2-V Trimming-Less Voltage Reference with 1.4-mV Across-Wafer Total Accuracy. , 2021, , .		3
20	SRAM with In-Memory Inference and 90% Bitline Activity Reduction for Always-On Sensing with 109 TOPS/mm ² and 749-1,459 TOPS/W in 28nm. , 2021, , .		0
21	SRAM with In-Memory Inference and 90% Bitline Activity Reduction for Always-On Sensing with 109 TOPS/mm2 and 749-1,459 TOPS/W in 28nm. , 2021, , .		0
22	TempDiff: Feature Map-Level CNN Sparsity Enhancement at Near-Zero Memory Overhead via Temporal Difference. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 620-633.	3.6	2
23	Automated Design of Reconfigurable Microarchitectures for Accelerators Under Wide-Voltage Scaling. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 777-790.	3.1	2
24	Editorial on the Opening of the New Editorial Year—The State of the IEEE Transactions on Very Large Scale Integration (VLSI) Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1-2.	3.1	1
25	Integrated Power Management for Battery-Indifferent Systems With Ultra-Wide Adaptation Down to nW. IEEE Journal of Solid-State Circuits, 2020, 55, 967-976.	5.4	19
26	Low-Energy Voice Activity Detection via Energy-Quality Scaling From Data Conversion to Machine Learning. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1378-1388.	5.4	10
27	Fully Digital Rail-to-Rail OTA With Sub-1000- <i>μ</i> m² Area, 250-mV Minimum Supply, and nW Power at 150-pF Load in 180 nm. IEEE Solid-State Circuits Letters, 2020, 3, 474-477.	2.0	35
28	Deep Sub-pJ/Bit Low-Area Energy-Security Scalable SIMON Crypto-Core in 40 nm. , 2020, , .		3
29	Fully Synthesizable All-Digital Unified Dynamic Entropy Generation, Extraction, and Utilization Within the Same Cryptographic Core. IEEE Solid-State Circuits Letters, 2020, 3, 402-405.	2.0	3
30	Broad-Purpose In-Memory Computing for Signal Monitoring and Machine Learning Workloads. IEEE Solid-State Circuits Letters, 2020, 3, 394-397.	2.0	11
31	Editorial on the Conclusion of the 2020 Editorial Year—The Climactic Finale of a Peculiar Year. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 2479-2480.	3.1	Ο
32	Approximate Multipliers With Dynamic Truncation for Energy Reduction via Graceful Quality Degradation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3427-3431.	3.0	13
33	Fully Synthesizable Low-Area Analogue-to-Digital Converters With Minimal Design Effort Based on the Dyadic Digital Pulse Modulation. IEEE Access, 2020, 8, 70890-70899.	4.2	35
34	Processor Energy–Performance Range Extension Beyond Voltage Scaling via Drop-In Methodologies. IEEE Journal of Solid-State Circuits, 2020, 55, 2670-2679.	5.4	5
35	Adaptive Digital Circuits for Power-Performance Range beyond Wide Voltage Scaling. , 2020, , .		7
36	Energy-Quality Scalable Memory-Frugal Feature Extraction for Always-On Deep Sub-mW Distributed Vision. IEEE Access, 2020, 8, 18951-18961.	4.2	3

#	Article	IF	CITATIONS
37	Automated Design Flows and Run-Time Optimization for Reconfigurable Microarchitecures. , 2020, , 55-92.		0
38	Reconfigurable Clock Networks, Automated Design Flows, Run-Time Optimization, and Case Study. , 2020, , 115-144.		2
39	Voice Activity Detection with >83% Accuracy under SNR down to â^'3dB at \$1.19mu mathrm{W}\$ and 0.07mm ² in 40nm. , 2020, , .		1
40	Editorial: TVLSI Keynote Papers Enriching Our Transactions With Invited Contributions. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1485-1485.	3.1	0
41	Reconfigurable Clock Networks for Wide Voltage Scaling. IEEE Journal of Solid-State Circuits, 2019, 54, 2622-2631.	5.4	8
42	Low-Swing Links with Dynamic Energy-Quality Trade-off for Error-Resilient Applications. , 2019, , .		3
43	Trends in Hardware Security: From Basics to ASICs. IEEE Solid-State Circuits Magazine, 2019, 11, 56-74.	0.4	58
44	Enabling Ubiquitous Hardware Security via Energy-Efficient Primitives and Systems : (Invited Paper). , 2019, , .		11
45	Standard Cell-Based Ultra-Compact DACs in 40-nm CMOS. IEEE Access, 2019, 7, 126479-126488.	4.2	30
46	Editorial TVLSI Positioning—Continuing and Accelerating an Upward Trajectory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 253-280.	3.1	6
47	Fully Synthesizable Low-Area Digital-to-Analog Converter With Graceful Degradation and Dynamic Power-Resolution Scaling. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 2865-2875.	5.4	31
48	Fully-Synthesizable Current-Input ADCs for Ultra-Low Area and Minimal Design Effort. , 2019, , .		5
49	PUF-based Key Generation with Design Margin Reduction via In-Situ and PVT Sensor Fusion. , 2019, , .		1
50	Energy-Quality Scalable Analog-to-Digital Conversion and Machine Learning Engine in a 51.9 nJ/frame Voice Activity Detector. , 2019, , .		0
51	An Energy Aware Variation-Tolerant Writing Termination Control for STT-based Non Volatile Flip-Flops. , 2019, , .		2
52	Minimum-Effort Design of Ultra-Low Power Interfaces for the Internet of Things. , 2019, , .		3
53	A pW-Power Hz-Range Oscillator Operating With a 0.3–1.8-V Unregulated Supply. IEEE Journal of Solid-State Circuits, 2019, 54, 1487-1496.	5.4	38
54	Token-Based Security for the Internet of Things With Dynamic Energy-Quality Tradeoff. IEEE Internet of Things Journal, 2019, 6, 2843-2859.	8.7	46

#	Article	IF	CITATIONS
55	Energy-Quality Scalable Adders Based on Nonzeroing Bit Truncation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 964-968.	3.1	20
56	Ultra-Low Power and Minimal Design Effort Interfaces for the Internet of Things: Invited paper. , 2019, , .		3
57	Drop-In Energy-Performance Range Extension in Microcontrollers Beyond VDD Scaling. , 2019, , .		4
58	Dynamically Adaptable Pipeline for Energy-Efficient Microarchitectures Under Wide Voltage Scaling. IEEE Journal of Solid-State Circuits, 2018, 53, 632-641.	5.4	21
59	The Internet of Things on Its Edge: Trends Toward Its Tipping Point. IEEE Consumer Electronics Magazine, 2018, 7, 77-87.	2.3	63
60	A Variation-Aware Timing Modeling Approach for Write Operation in Hybrid CMOS/STT-MTJ Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 1086-1095.	5.4	41
61	iRazor: Current-Based Error Detection and Correction Scheme for PVT Variation in 40-nm ARM Cortex-R4 Processor. IEEE Journal of Solid-State Circuits, 2018, 53, 619-631.	5.4	62
62	Dynamic Reference Voltage Sensing Scheme for Read Margin Improvement in STT-MRAMs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 1269-1278.	5.4	26
63	Display Stream Compression Encoder Architectures for Real-time 4K and 8K Video Encoding. , 2018, , .		5
64	Guest Editorial Energy-Quality Scalable Circuits and Systems for Sensing and Computing: From Approximate to Communication-Inspired and Learning-Based. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 361-368.	3.6	11
65	Energy-Quality Scalable Integrated Circuits and Systems: Continuing Energy Scaling in the Twilight of Moore's Law. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 653-678.	3.6	29
66	Fully Synthesizable PUF Featuring Hysteresis and Temperature Compensation for 3.2% Native BER and 1.02 fJ/b in 40 nm. IEEE Journal of Solid-State Circuits, 2018, 53, 2828-2839.	5.4	70
67	Fully Synthesizable, Rail-to-Rail Dynamic Voltage Comparator for Operation down to 0.3 V. , 2018, , .		19
68	Time-Based Sensing for Reference-Less and Robust Read in STT-MRAM Memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3338-3348.	5.4	23
69	26.3 Reconfigurable clock networks for random skew mitigation from subthreshold to nominal voltage. , 2017, , .		5
70	Energy-quality scalable adaptive VLSI circuits and systems beyond approximate computing. , 2017, , .		30
71	A Novel Framework to Estimate the Path Delay Variability On the Back of an Envelope via the Fan-Out-of-4 Metric. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2073-2085.	5.4	21
72	Guest Editorial Special Issue on Circuits and Systems for the Internet of Things—From Sensing to Sensemaking. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2221-2225.	5.4	10

#	Article	IF	CITATIONS
73	Design-Oriented Energy Models for Wide Voltage Scaling Down to the Minimum Energy Point. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 3115-3125.	5.4	7
74	Power-precision scalable latch memories. , 2017, , .		8
75	A closed-form energy model for VLSI circuits under wide voltage scaling. , 2016, , .		3
76	8.8 iRazor: 3-transistor current-based error detection and correction in an ARM Cortex-R4 processor. , 2016, , .		52
77	Novel Boosted-Voltage Sensing Scheme for Variation-Resilient STT-MRAM Read. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 1652-1660.	5.4	28
78	Voltage Scaled STT-MRAMs Towards Minimum-Energy Write Access. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6, 305-318.	3.6	19
79	Static Physically Unclonable Functions for Secure Chip Identification With 1.9–5.8% Native Bit Instability at 0.6–1 V and 15 fJ/bit in 65 nm. IEEE Journal of Solid-State Circuits, 2016, 51, 763-775.	5.4	54
80	Approximate SRAMs With Dynamic Energy-Quality Management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 2128-2141.	3.1	37
81	Jitter analysis and measurement in subthreshold source-coupled differential ring oscillators. , 2015, , .		Ο
82	Variations in Nanometer CMOS Flip-Flops: Part l—Impact of Process Variations on Timing. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 2035-2043.	5.4	80
83	Variations in Nanometer CMOS Flip-Flops: Part Il—Energy Variability and Impact of Other Sources of Variations. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 835-843.	5.4	23
84	SRAM for Error-Tolerant Applications With Dynamic Energy-Quality Management in 28 nm CMOS. IEEE Journal of Solid-State Circuits, 2015, 50, 1310-1323.	5.4	54
85	Novel Self-Body-Biasing and Statistical Design for Near-Threshold Circuits With Ultra Energy-Efficient AES as Case Study. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23, 1390-1401.	3.1	36
86	Comparative evaluation of Tunnel-FET ultra-low voltage SRAM bitcell and impact of variations. , 2014, ,		0
87	Effectiveness of Leakage Power Analysis Attacks on DPA-Resistant Logic Styles Under Process Variations. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 429-442.	5.4	49
88	A 346 µm 2 VCO-Based, Reference-Free, Self-Timed Sensor Interface for Cubic-Millimeter Sensor Nodes in 28 nm CMOS. IEEE Journal of Solid-State Circuits, 2014, 49, 2462-2473.	5.4	25
89	13.8 A 32kb SRAM for error-free and error-tolerant applications with dynamic energy-quality management in 28nm CMOS. , 2014, , .		18
90	Comparative soft error evaluation of layout cells in FinFET technology. Microelectronics Reliability, 2014, 54, 2300-2305.	1.7	24

#	Article	IF	CITATIONS
91	Tunnel FETs for Ultra-Low Voltage Digital VLSI Circuits: Part II–Evaluation at Circuit Level and Design Perspectives. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22, 2499-2512.	3.1	29
92	Tunnel FETs for Ultralow Voltage Digital VLSI Circuits: Part l—Device–Circuit Interaction and Evaluation at Device Level. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22, 2488-2498.	3.1	58
93	Enhancing the Static Noise Margins by Upsizing Length for Ultra-Low Voltage/Power/Energy Gates. Journal of Low Power Electronics, 2014, 10, 137-148.	0.6	11
94	"EChO―Reconfigurable Power Management Unit for Energy Reduction in Sleep-Active Transitions. IEEE Journal of Solid-State Circuits, 2013, 48, 1921-1932.	5.4	29
95	Introduction to the special issue on IEEE-NEWCAS 2012. Analog Integrated Circuits and Signal Processing, 2013, 77, 93-94.	1.4	0
96	Impact of High-Mobility Materials on the Performance of Near- and Sub-Threshold CMOS Logic Circuits. IEEE Transactions on Electron Devices, 2013, 60, 972-977.	3.0	9
97	Guest Editorial for the Special Issue on Ultra-Low-Voltage VLSI Circuits and Systems for Green Computing. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 849-852.	3.0	16
98	Active RFID: Perpetual wireless communications platform for sensors. , 2012, , .		11
99	Understanding the Basic Advantages of Bulk FinFETs for Sub- and Near-Threshold Logic Circuits From Device Measurements. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 439-442.	3.0	33
100	A Simple Circuit Approach to Reduce Delay Variations in Domino Logic Gates. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 2292-2300.	5.4	44
101	Ultra-Low Power VLSI Circuit Design Demystified and Explained: A Tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 3-29.	5.4	334
102	From energyâ€delay metrics to constraints on the design of digital circuits. International Journal of Circuit Theory and Applications, 2012, 40, 815-834.	2.0	16
103	Tapered-Vth Approach for Energy-Efficient CMOS Buffers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 2698-2707.	5.4	6
104	Modeling strategies of the input admittance of RC interconnects for VLSI CAD tools. Microelectronics Journal, 2011, 42, 63-73.	2.0	4
105	Simple and accurate modeling of the output transition time in nanometer CMOS gates. International Journal of Circuit Theory and Applications, 2010, 38, 995-1012.	2.0	2
106	Optimization of the wire grid size for differential routing: Analysis and impact on the power-delay-area tradeoff. Microelectronics Journal, 2010, 41, 669-679.	2.0	3
107	A VARIABILITY-TOLERANT FEEDBACK TECHNIQUE FOR THROUGHPUT MAXIMIZATION OF TRBGs WITH PREDEFINED ENTROPY. Journal of Circuits, Systems and Computers, 2010, 19, 879-895.	1.5	14
108	Understanding DC Behavior of Subthreshold CMOS Logic Through Closed-Form Analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 1597-1607.	5.4	149

#	ARTICLE	IF	CITATIONS
109	Understanding the Effect of Process Variations on the Delay of Static and Domino Logic. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18, 697-710.	3.1	166
110	Analysis and Modeling of Energy Consumption in RLC Tree Circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2009, 17, 278.	3.1	4
111	Improving Power-Delay Performance of Ultra-Low-Power Subthreshold SCL Circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56, 127-131.	3.0	20
112	Power-Aware Design of Nanometer MCML Tapered Buffers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 16-20.	3.0	10
113	Very fast carry energy efficient computation based on mixed dynamic/transmission-gate full adders. Electronics Letters, 2007, 43, 707.	1.0	3
114	Mixed Full Adder topologies for high-performance low-power arithmetic circuits. Microelectronics Journal, 2007, 38, 130-139.	2.0	62
115	The Digital Tent Map: Performance Analysis and Optimized Design as a Low-Complexity Source of Pseudorandom Bits. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1451-1458.	4.7	36
116	Design of cascaded ECL gates with power constraint. Electronics Letters, 2006, 42, 211.	1.0	1
117	Energy consumption in RC tree circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2006, 14, 452-461.	3.1	15
118	Power-delay optimization of D-latch/MUX source coupled logic gates. International Journal of Circuit Theory and Applications, 2005, 33, 65-86.	2.0	17
119	Modelling and design considerations on CML gates under high-current effects. International Journal of Circuit Theory and Applications, 2005, 33, 503-518.	2.0	4
120	An efficient implementation of PRNGs based on the digital sawtooth map. International Journal of Circuit Theory and Applications, 2004, 32, 615-627.	2.0	8
121	Analysis and comparison on full adder block in submicron technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2002, 10, 806-823.	3.1	165
122	Modelling of source-coupled logic gates. International Journal of Circuit Theory and Applications, 2002, 30, 459-477.	2.0	20
123	Power estimation in adiabatic circuits: a simple and accurate model. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2001, 9, 608-615.	3.1	25