Fu-Cheng Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372199/publications.pdf

Version: 2024-02-01

		87888	20358
150	14,242	38	116
papers	citations	h-index	g-index
153	153	153	25945
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
4	Involvement of a Magnaporthe grisea Serine/Threonine Kinase Gene, MgATG1, in Appressorium Turgor and Pathogenesis. Eukaryotic Cell, 2007, 6, 997-1005.	3.4	249
5	Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity. Scientific Reports, 2016, 6, 32467.	3.3	181
6	Systematic Analysis of Zn2Cys6 Transcription Factors Required for Development and Pathogenicity by High-Throughput Gene Knockout in the Rice Blast Fungus. PLoS Pathogens, 2014, 10, e1004432.	4.7	156
7	Characterization of 47 Cys ₂ â€His ₂ zinc finger proteins required for the development and pathogenicity of the rice blast fungus <i>Magnaporthe oryzae</i> . New Phytologist, 2016, 211, 1035-1051.	7.3	128
8	Role of Diverse Non-Systemic Fungal Endophytes in Plant Performance and Response to Stress: Progress and Approaches. Journal of Plant Growth Regulation, 2010, 29, 116-126.	5.1	122
9	Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Applied Microbiology and Biotechnology, 2012, 93, 1231-1239.	3.6	122
10	Identity, Diversity, and Molecular Phylogeny of the Endophytic Mycobiota in the Roots of Rare Wild Rice (<i>Oryza granulate</i>) from a Nature Reserve in Yunnan, China. Applied and Environmental Microbiology, 2010, 76, 1642-1652.	3.1	113
11	The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in <i>Magnaporthe oryzae</i> . Autophagy, 2010, 6, 74-85.	9.1	90
12	MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> . Autophagy, 2018, 14, 1543-1561.	9.1	89
13	Evidence for Biotrophic Lifestyle and Biocontrol Potential of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease. PLoS ONE, 2013, 8, e61332.	2.5	81
14	The small <scp>GTP</scp> ase <scp>MoYpt</scp> 7 is required for membrane fusion in autophagy and pathogenicity of <scp><i>M</i></scp> <i>agnaporthe oryzae</i> . Environmental Microbiology, 2015, 17, 4495-4510.	3.8	76
15	A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Scientific Reports, 2015, 5, 16346.	3.3	74
16	An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae. Current Genetics, 2009, 55, 461-473.	1.7	73
17	Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy, 2012, 8, 1415-1425.	9.1	73
18	Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biology, 2010, 114, 797-808.	2.5	70

#	Article	IF	Citations
19	The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. Scientific Reports, 2014, 4, 5783.	3.3	66
20	MgAtg9 trafficking in <i>Magnaporthe oryzae</i> . Autophagy, 2009, 5, 946-953.	9.1	65
21	Current opinions on autophagy in pathogenicity of fungi. Virulence, 2019, 10, 481-489.	4.4	65
22	Colorimetric detection of Hg ²⁺ and Pb ²⁺ based on peroxidase-like activity of graphene oxide–gold nanohybrids. Analytical Methods, 2015, 7, 1951-1957.	2.7	64
23	The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. Molecular Plant, 2021, 14, 1652-1667.	8.3	63
24	Autophagy in plant pathogenic fungi. Seminars in Cell and Developmental Biology, 2016, 57, 128-137.	5.0	62
25	Trichoderma taxisp. nov., an endophytic fungus from Chinese yewTaxus mairei. FEMS Microbiology Letters, 2007, 270, 90-96.	1.8	55
26	A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte. FEMS Microbiology Letters, 2010, 307, 94-101.	1.8	55
27	Multifunction of autophagy-related genes in filamentous fungi. Microbiological Research, 2012, 167, 339-345.	5.3	55
28	Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta, 2015, 242, 153-166.	3.2	54
29	MoARG1, MoARG5,6 and MoARG7 involved in arginine biosynthesis are essential for growth, conidiogenesis, sexual reproduction, and pathogenicity in Magnaporthe oryzae. Microbiological Research, 2015, 180, 11-22.	5.3	52
30	Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Applied Microbiology and Biotechnology, 2008, 78, 833-840.	3.6	50
31	MoFLP1, encoding a novel fungal fasciclin-like protein, is involved in conidiation and pathogenicity in Magnaporthe oryzae. Journal of Zhejiang University: Science B, 2009, 10, 434-444.	2.8	50
32	Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genetics and Biology, 2008, 45, 1340-1347.	2.1	46
33	OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis. Frontiers in Plant Science, 2016, 7, 2001.	3.6	46
34	Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species. PLoS ONE, 2016, 11, e0160613.	2.5	45
35	Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling. Scientific Reports, 2015, 5, 13624.	3.3	44
36	Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Scientific Reports, 2017, 7, 40018.	3.3	44

#	Article	IF	Citations
37	FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. Journal of Experimental Botany, 2019, 70, 6375-6388.	4.8	44
38	Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiology Letters, 2005, 245, 131-137.	1.8	42
39	White-spot disease of Chinese soft-shelled turtles (Trionyx sinens) caused by Paecilomyces lilacinus. Journal of Zhejiang University: Science B, 2008, 9, 578-581.	2.8	42
40	PTS1 Peroxisomal Import Pathway Plays Shared and Distinct Roles to PTS2 Pathway in Development and Pathogenicity of Magnaporthe oryzae. PLoS ONE, 2013, 8, e55554.	2.5	42
41	Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Fungal Genetics and Biology, 2007, 44, 819-829.	2.1	38
42	MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Research in Microbiology, 2013, 164, 300-309.	2.1	38
43	Investigation of the Relationship between the Metabolic Profile of Tobacco Leaves in Different Planting Regions and Climate Factors Using a Pseudotargeted Method Based on Gas Chromatography/Mass Spectrometry. Journal of Proteome Research, 2013, 12, 5072-5083.	3.7	38
44	Molecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum. International Journal of Molecular Sciences, 2014, 15, 14766-14785.	4.1	37
45	VPS9 domainâ€containing proteins are essential for autophagy and endocytosis in <i>Pyricularia oryzae</i> . Environmental Microbiology, 2018, 20, 1516-1530.	3.8	37
46	Autophagy During Conidiation, Conidial Germination and Turgor Generation in <i>Magnaporthe grisea</i> . Autophagy, 2007, 3, 472-473.	9.1	36
47	Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (xylariaceae). Journal of Microbiology, 2011, 49, 15-23.	2.8	35
48	Effect of the dark septate endophytic fungus Acrocalymma vagum on heavy metal content in tobacco leaves. Symbiosis, 2018, 74, 89-95.	2.3	35
49	Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance. International Journal of Molecular Sciences, 2015, 16, 30438-30457.	4.1	33
50	Denitrification-Potential Evaluation and Nitrate-Removal-Pathway Analysis of Aerobic Denitrifier Strain Marinobacter hydrocarbonoclasticus RAD-2. Water (Switzerland), 2018, 10, 1298.	2.7	33
51	A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. Autophagy, 2021, 17, 2939-2961.	9.1	33
52	Crosstalk between SNF1 Pathway and the Peroxisome-Mediated Lipid Metabolism in Magnaporthe oryzae. PLoS ONE, 2014, 9, e103124.	2.5	32
53	Endophytic fungus <i>Falciphora oryzae</i> promotes lateral root growth by producing indole derivatives after sensing plant signals. Plant, Cell and Environment, 2020, 43, 358-373.	5.7	30
54	Fungal diversity on fallen leaves of Ficus in northern Thailand. Journal of Zhejiang University: Science B, 2008, 9, 835-841.	2.8	29

#	Article	IF	Citations
55	Role refinement of melanin synthesis genes by gene knockout reveals their functional diversity in Pyricularia oryzae strains. Microbiological Research, 2021, 242, 126620.	5.3	28
56	Dark septate endophyte Falciphora oryzae-assisted alleviation of cadmium in rice. Journal of Hazardous Materials, 2021, 419, 126435.	12.4	28
57	Analysis of <i>Nicotiana tabacum <scp>PIN</scp></i> genes identifies <i><scp>NtPIN4</scp></i> as a key regulator of axillary bud growth. Physiologia Plantarum, 2017, 160, 222-239.	5.2	27
58	The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus <i>Magnaporthe oryzae</i> . Molecular Plant Pathology, 2017, 18, 1075-1088.	4.2	26
59	A Novel Derivative of (-)mycousnine Produced by the Endophytic Fungus Mycosphaerella nawae, Exhibits High and Selective Immunosuppressive Activity on T Cells. Frontiers in Microbiology, 2017, 8, 1251.	3.5	26
60	The P5-type ATPase Spf1 is required for development and virulence of the rice blast fungus Pyricularia oryzae. Current Genetics, 2020, 66, 385-395.	1.7	25
61	MoRad6â€mediated ubiquitination pathways are essential for development and pathogenicity in <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2016, 18, 4170-4187.	3.8	24
62	Metabolomics Analysis Identifies Sphingolipids as Key Signaling Moieties in Appressorium Morphogenesis and Function in Magnaporthe oryzae. MBio, 2019, 10, .	4.1	24
63	Disruption of MoCMK1, encoding a putative calcium/calmodulin-dependent kinase, in Magnaporthe oryzae. Microbiological Research, 2010, 165, 402-410.	5.3	22
64	<i>AVR1-CO39</i> Is a Predominant Locus Governing the Broad Avirulence of <i>Magnaporthe oryzae</i> 2539 on Cultivated Rice (<i>Oryza sativa</i> L.). Molecular Plant-Microbe Interactions, 2011, 24, 13-17.	2.6	22
65	Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae. Microbiological Research, 2015, 178, 51-58.	5.3	21
66	Glycerol-3-Phosphate Shuttle Is Involved in Development and Virulence in the Rice Blast Fungus Pyricularia oryzae. Frontiers in Plant Science, 2018, 9, 687.	3.6	21
67	The basic helix–loop–helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism. Environmental Microbiology, 2018, 20, 3427-3441.	3.8	21
68	Fâ€box proteins MoFwd1, MoCdc4 and MoFbx15 regulate development and pathogenicity in the rice blast fungus <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2019, 21, 3027-3045.	3.8	21
69	MoSec $61\hat{l}^2$, the beta subunit of Sec 61 , is involved in fungal development and pathogenicity, plant immunity, and ER-phagy in <i>Magnaporthe oryzae</i>). Virulence, 2020, 11, 1685-1700.	4.4	21
70	Pex13 and Pex14, the key components of the peroxisomal docking complex, are required for peroxisome formation, host infection and pathogenicity-related morphogenesis in <i>Magnaporthe oryzae</i> Virulence, 2019, 10, 292-314.	4.4	20
71	The Methylcitrate Cycle is Required for Development and Virulence in the Rice Blast Fungus <i>Pyricularia oryzae</i> . Molecular Plant-Microbe Interactions, 2019, 32, 1148-1161.	2.6	20
72	Involvement of MoVMA11, a Putative Vacuolar ATPase c' Subunit, in Vacuolar Acidification and Infection-Related Morphogenesis of Magnaporthe oryzae. PLoS ONE, 2013, 8, e67804.	2.5	19

#	Article	IF	CITATIONS
73	<scp>MoOpy2</scp> is essential for fungal development, pathogenicity, and autophagy in <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2022, 24, 1653-1671.	3.8	19
74	Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. International Journal of Molecular Sciences, 2022, 23, 4658.	4.1	19
75	An autophagy gene, TrATG5, affects conidiospore differentiation in Trichoderma reesei. Research in Microbiology, 2011, 162, 756-763.	2.1	18
76	Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem. Science of the Total Environment, 2019, 690, 911-922.	8.0	18
77	The Endophytic Fungus Piriformospora Indica-Assisted Alleviation of Cadmium in Tobacco. Journal of Fungi (Basel, Switzerland), 2021, 7, 675.	3.5	18
78	Chapter 19 Monitoring Autophagy in Magnaporthe oryzae. Methods in Enzymology, 2008, 451, 271-294.	1.0	17
79	Calpains are involved in asexual and sexual development, cell wall integrity and pathogenicity of the rice blast fungus. Scientific Reports, 2016, 6, 31204.	3.3	17
80	A preliminary DNA barcode selection for the genus <i>Russula</i> (Russulales, Basidiomycota). Mycology, 2019, 10, 61-74.	4.4	17
81	Representative appressorium stage cDNA library of Magnaporthe grisea. Journal of Zhejiang University Science B, 2005, 6B, 132-136.	0.4	17
82	UvKmt6-mediated H3K27 trimethylation is required for development, pathogenicity, and stress response in <i>Ustilaginoidea virens</i> . Virulence, 2021, 12, 2972-2988.	4.4	16
83	Disruption and molecular characterization of calpains-related (MoCAPN1, MoCAPN3 and MoCAPN4) genes in Magnaporthe oryzae. Microbiological Research, 2014, 169, 844-854.	5. 3	14
84	An ATP-dependent protease homolog ensures basic standards of survival and pathogenicity for Magnaporthe oryzae. European Journal of Plant Pathology, 2015, 141, 703-716.	1.7	14
85	Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks. Sensors, 2018, 18, 1944.	3.8	14
86	PoRal2 Is Involved in Appressorium Formation and Virulence via Pmk1 MAPK Pathways in the Rice Blast Fungus Pyricularia oryzae. Frontiers in Plant Science, 2021, 12, 702368.	3.6	14
87	Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae. Journal of Zhejiang University: Science B, 2008, 9, 793-796.	2.8	13
88	Trichodermin ($4\hat{l}^2$ -acetoxy- $12,13$ -epoxytrichothec- 9 -ene). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o702-o702.	0.2	13
89	Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae. Microbiological Research, 2016, 182, 40-48.	5. 3	12
90	Variations of Alkaloid Accumulation and Gene Transcription in Nicotiana tabacum. Biomolecules, 2018, 8, 114.	4.0	12

#	Article	IF	CITATIONS
91	N6-methyladenosine RNA methylation is involved in virulence of the rice blast fungus <i>Pyricularia oryzae</i> (syn. <i>Magnaporthe oryzae</i>). FEMS Microbiology Letters, 2019, 366, .	1.8	12
92	Analyzing autophagy in Magnaporthe oryzae. Autophagy, 2011, 7, 525-530.	9.1	11
93	An autophagy gene, HoATG5, is involved in sporulation, cell wall integrity and infection of wounded barley leaves. Microbiological Research, 2016, 192, 326-335.	5.3	11
94	Simultaneous determination of tobacco minor alkaloids and tobaccoâ€specific nitrosamines in mainstream smoke by dispersive solidâ€phase extraction coupled with ultraâ€performance liquid chromatography/tandem orbitrap mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1791-1798.	1.5	11
95	The casein kinase MoYck1 regulates development, autophagy, and virulence in the rice blast fungus. Virulence, 2019, 10, 719-733.	4.4	11
96	The chitin deacetylase PoCda7 is involved in the pathogenicity of Pyricularia oryzae. Microbiological Research, 2021, 248, 126749.	5.3	11
97	A kelch domain cell end protein, PoTea1, mediates cell polarization during appressorium morphogenesis in Pyricularia oryzae. Microbiological Research, 2022, 259, 126999.	5.3	11
98	A simple and effective method for total RNA isolation of appressoria in Magnaporthe oryzae. Journal of Zhejiang University: Science B, 2008, 9, 811-817.	2.8	10
99	Genetic variation in alkaloid accumulation in leaves of Nicotiana. Journal of Zhejiang University: Science B, 2013, 14, 1100-1109.	2.8	10
100	Oneâ€step Multiplex <scp>RT</scp> â€ <scp>PCR</scp> for Simultaneous Detection of Four Viruses in Tobacco. Journal of Phytopathology, 2013, 161, 92-97.	1.0	10
101	Downregulation of the lycopene ε-cyclase gene confers tolerance to salt and drought stress in Nicotiana tabacum. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	10
102	A Novel Species of Penicillium With Inhibitory Effects Against Pyricularia oryzae and Fungal Pathogens Inducing Citrus Diseases. Frontiers in Cellular and Infection Microbiology, 2020, 10, 604504.	3.9	10
103	Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae. Journal of Zhejiang University: Science B, 2008, 9, 802-810.	2.8	9
104	Identification and characterization of new Muscodor endophytes from gramineous plants in Xishuangbanna, China. MicrobiologyOpen, 2019, 8, e00666.	3.0	9
105	Endosomal sorting complexes required for transportâ€0 (<scp>ESCRT</scp> â€0) are essential for fungal development, pathogenicity, autophagy and <scp>ER</scp> â€phagy in <i>Magnaporthe oryzae</i> Environmental Microbiology, 2022, 24, 1076-1092.	3.8	9
106	Current opinions on mitophagy in fungi. Autophagy, 2023, 19, 747-757.	9.1	9
107	Morph-molecular characterization of Meira nicotianae sp. nov., a novel basidiomycetous, anamorphic yeast-like fungus associated with growth improvement in tobacco plant. Phytotaxa, 2018, 365, 169.	0.3	8
108	Vacuolar Protein-Sorting Receptor MoVps13 Regulates Conidiation and Pathogenicity in Rice Blast Fungus Magnaporthe oryzae. Journal of Fungi (Basel, Switzerland), 2021, 7, 1084.	3.5	8

#	Article	IF	Citations
109	The additional <scp>PRC2</scp> subunit and Sin3 histone deacetylase complex are required for the normal distribution of <scp>H3K27me3</scp> occupancy and transcriptional silencing in <i>Magnaporthe oryzae</i> . New Phytologist, 2022, 236, 576-589.	7.3	8
110	New and rare lignicolous hyphomycetes from Zhejiang Province, China. Journal of Zhejiang University: Science B, 2008, 9, 797-801.	2.8	7
111	Metabolic profiles of Cuibi-1 and Zhongyan-100 flue-cured tobacco leaves in different growing regions by gas chromatography/mass spectrometry. Royal Society Open Science, 2018, 5, 180261.	2.4	7
112	PoMet3 and PoMet14 associated with sulfate assimilation are essential for conidiogenesis and pathogenicity in Pyricularia oryzae. Current Genetics, 2020, 66, 765-774.	1.7	7
113	Cloning, sequencing and expression analysis of the NAR promoter activated during hyphal stage of Magnaporthe grisea. Journal of Zhejiang University: Science B, 2007, 8, 661-665.	2.8	6
114	Functional Characterization of a NEM1-Like Gene in Magnaporthe oryzae. Agricultural Sciences in China, 2011, 10, 1385-1390.	0.6	6
115	<i>Chaetomium siamense</i> sp. nov., a soil isolate from Thailand, produces a new chaetoviridin, G. Mycotaxon, 2011, 115, 19-27.	0.3	6
116	Endophytic Diaporthe from Southeast China are genetically diverse based on multi-locus phylogeny analyses. World Journal of Microbiology and Biotechnology, 2014, 30, 237-243.	3.6	6
117	<i>MoLEU1</i> , <i>MoLEU2</i> , and <i>MoLEU4</i> regulated by <i>MoLEU3</i> are involved in leucine biosynthesis, fungal development, and pathogenicity in <i>Magnaporthe oryzae</i> . Environmental Microbiology Reports, 2019, 11, 784-796.	2.4	6
118	Genome-wide identification, phylogeny, and expression profile of the sucrose transporter multigene family in tobacco. Canadian Journal of Plant Science, 2019, 99, 312-323.	0.9	6
119	MoFap7, a ribosome assembly factor, is required for fungal development and plant colonization of <i>Magnaporthe oryzae</i> . Virulence, 2019, 10, 1047-1063.	4.4	6
120	A New Species in Pseudophialophora From Wild Rice and Beneficial Potential. Frontiers in Microbiology, 2022, 13, 845104.	3.5	6
121	Magnaporthe oryzae MTP1 gene encodes a type III transmembrane protein involved in conidiation and conidial germination. Journal of Zhejiang University: Science B, 2008, 9, 511-519.	2.8	5
122	Identification and molecular cloning Moplaa gene, a homologue of Homo sapiens PLAA, in Magnaporthe oryzae. Microbiological Research, 2011, 167, 8-13.	5.3	5
123	A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco. International Journal of Molecular Sciences, 2015, 16, 27422-27432.	4.1	5
124	Application of the red fluorescent protein mCherry in mycelial labeling and organelle tracing in the dermatophyte Trichophyton mentagrophytes. FEMS Microbiology Letters, 2018, 365, .	1.8	5
125	Insights of roles played by septins in pathogenic fungi. Virulence, 2021, 12, 1550-1562.	4.4	5
126	Melanin Promotes Spore Production in the Rice Blast Fungus Magnaporthe oryzae. Frontiers in Microbiology, 2022, 13, 843838.	3.5	5

#	Article	IF	Citations
127	A Subunit of ESCRT-III, Molst1, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Magnaporthe oryzae. Frontiers in Plant Science, 2022, 13, 845139.	3.6	4
128	Methods to Study Autophagocytosis in. Methods in Molecular Biology, 2021, 2356, 173-185.	0.9	3
129	Trichodermol (4α-hydroxy-12,13-epoxytrichothec-9-ene). Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2879-o2879.	0.2	3
130	Casein Kinase 2 Mediates Degradation of Transcription Factor Pcf1 during Appressorium Formation in the Rice Blast Fungus. Journal of Fungi (Basel, Switzerland), 2022, 8, 144.	3.5	3
131	A Putative D-Arabinono-1,4-lactone Oxidase, MoAlo1, Is Required for Fungal Growth, Conidiogenesis, and Pathogenicity in Magnaporthe oryzae. Journal of Fungi (Basel, Switzerland), 2022, 8, 72.	3.5	3
132	UvKmt2-Mediated H3K4 Trimethylation Is Required for Pathogenicity and Stress Response in Ustilaginoidea virens. Journal of Fungi (Basel, Switzerland), 2022, 8, 553.	3.5	3
133	Three duplication events and variable molecular evolution characteristics involved in multiple GGPS genes of six Solanaceae species. Journal of Genetics, 2016, 95, 453-457.	0.7	2
134	Protubera beijingensis sp. nov. (Protophallaceae, Phallales) from China. Phytotaxa, 2018, 348, 133.	0.3	2
135	Isolation and Functional Analysis of Effector Proteins of. Methods in Molecular Biology, 2021, 2356, 199-209.	0.9	2
136	MAT Loci Play Crucial Roles in Sexual Development but Are Dispensable for Asexual Reproduction and Pathogenicity in Rice Blast Fungus Magnaporthe oryzae. Journal of Fungi (Basel, Switzerland), 2021, 7, 858.	3.5	2
137	Gene Expression Profiling Related to Hyphal Growth in a Temperature-Sensitive Mutant of Magnaporthe oryzae. Journal of Integrative Agriculture, 2013, 12, 2189-2196.	3.5	1
138	Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae. Journal of Zhejiang University: Science B, 2018, 19, 79-84.	2.8	1
139	ATMT transformation efficiencies with native promoters in Botryosphaeria kuwatsukai causing ring rot disease in pear. World Journal of Microbiology and Biotechnology, 2018, 34, 179.	3.6	1
140	An efficient genetic manipulation protocol for dark septate endophyte Falciphora oryzae. Biotechnology Letters, 2021, 43, 2045-2052.	2.2	1
141	Studies on Autophagy Machinery in Magnaporthe oryzae. , 2009, , 33-40.		1
142	Dihalogenated trichodermin ($4\hat{l}^2$ -acetoxy-9,10-dibromo-12,13-epoxytrichothec). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o210-o210.	0.2	1
143	Sequence analysis and expression pattern of MGTA1 gene in rice blast pathogen Magnaporthe grisea. Journal of Zhejiang University Science B, 2005, 6B, 817-824.	0.4	1
144	2-(4-Chlorophenyl)-3-methyl-N-(5-methylthiazol-2-yl)butanamide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o184-o184.	0.2	1

#	Article	IF	Citations
145	Nucleosome Assembly Protein 1, Nap1, Is Required for the Growth, Development, and Pathogenicity of Magnaporthe oryzae. International Journal of Molecular Sciences, 2022, 23, 7662.	4.1	1
146	Autophagy researchers. Autophagy, 2014, 10, 552-555.	9.1	0
147	Autophagy in Plant Pathogenic Fungi. , 0, , .		O
148	Appressorium morphogenesis and penetration in rice blast fungus., 2021,, 147-157.		0
149	Similarities and Differences of Autophagy in Mammals, Plants, and Microbes. Advances in Experimental Medicine and Biology, 2021, 1208, 99-114.	1.6	0
150	Bostrycin. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2226-o2226.	0.2	0