Ligia Maria Moretto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372133/publications.pdf

Version: 2024-02-01

89 papers 2,642 citations

30 h-index 206112 48 g-index

89 all docs 89 docs citations

89 times ranked 2645 citing authors

#	Article	IF	CITATIONS
1	Synthesis, characterization, and anticancer activity of ferrocenyl complexes bearing different organopalladium fragments. Applied Organometallic Chemistry, 2022, 36, .	3.5	3
2	How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures: An electrochemical and computational study. Analytica Chimica Acta, 2022, 1204, 339740.	5.4	6
3	Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds. Analyst, The, 2021, 146, 2065-2073.	3.5	6
4	Unveiling the binding mode of perfluorooctanoic acid to human serum albumin. Protein Science, 2021, 30, 830-841.	7.6	25
5	Chemical analysis and computed tomography of metallic inclusions in Roman glass to unveil ancient coloring methods. Scientific Reports, 2021, 11, 11187.	3.3	7
6	What about Phenol Formaldehyde (PF) Foam in Modern-Contemporary Art? Insights into the Unaged and Naturally Aged Material by a Multi-Analytical Approach. Polymers, 2021, 13, 1964.	4.5	2
7	(INVITED)Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance. Results in Optics, 2021, 5, 100123.	2.0	33
8	Electrochemical preconcentration coupled with spectroscopic techniques for trace lead analysis in olive oils. Talanta, 2020, 210, 120667.	5.5	11
9	Bio- and Biomimetic Receptors for Electrochemical Sensing of Heavy Metal Ions. Sensors, 2020, 20, 6800.	3.8	22
10	Preparation and characterization of Ag-nanostars@Au-nanowires hierarchical nanostructures for highly sensitive surface enhanced Raman spectroscopy. Nano Express, 2020, 1, 020006.	2.4	12
11	Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid. Bioelectrochemistry, 2020, 134, 107540.	4.6	16
12	Conductive imprinted polymers for the direct electrochemical detection of \hat{l}^2 -lactam antibiotics: The case of cefquinome. Sensors and Actuators B: Chemical, 2019, 297, 126786.	7.8	37
13	Redesigning an Electrochemical MIP Sensor for PFOS: Practicalities and Pitfalls. Sensors, 2019, 19, 4433.	3.8	16
14	Disposable electrodes from waste materials and renewable sources for (bio)electroanalytical applications. Biosensors and Bioelectronics, 2019, 146, 111758.	10.1	48
15	Improved Synthesis, Anticancer Activity and Electrochemical Characterization of Unusual Zwitterionic Palladium Compounds with a Tenâ€Term Coordinative Ring ChemistrySelect, 2019, 4, 10911-10919.	1.5	7
16	Effectiveness and Compatibility of a Novel Sustainable Method for Stone Consolidation Based on Di-Ammonium Phosphate and Calcium-Based Nanomaterials. Materials, 2019, 12, 3025.	2.9	18
17	Plasma Activation of Copper Nanowires Arrays for Electrocatalytic Sensing of Nitrate in Food and Water. Nanomaterials, 2019, 9, 150.	4.1	11
18	Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art. Electrochimica Acta, 2019, 312, 72-79.	5.2	8

#	Article	IF	Citations
19	Challenges in the electrochemical (bio)sensing of nonelectroactive food and environmental contaminants. Current Opinion in Electrochemistry, 2019, 16, 57-65.	4.8	29
20	Electrochemical Immunosensor Based on Nanoelectrode Ensembles for the Serological Analysis of IgG-type Tissue Transglutaminase. Sensors, 2019, 19, 1233.	3.8	14
21	Calcium alkoxides for stone consolidation: Investigating the carbonation process. Powder Technology, 2019, 344, 260-269.	4.2	16
22	Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 7401-7407.	13.8	22
23	Impedimetric sensing of the immuno-enzymatic reaction of gliadin with a collagen-modified electrode. Electrochemistry Communications, 2018, 97, 51-55.	4.7	9
24	Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy. Angewandte Chemie, 2018, 130, 7523-7529.	2.0	0
25	Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly(<i>o</i> -phenylenediamine) Polymer. ACS Sensors, 2018, 3, 1291-1298.	7.8	96
26	Electrochemical preparation of standard solutions of Pb(II) ions in ionic liquid for analysis of hydrophobic samples: The olive oil case. Talanta, 2017, 172, 133-138.	5.5	3
27	Nanobiosensing with Arrays and Ensembles of Nanoelectrodes. Sensors, 2017, 17, 65.	3.8	22
28	Electrochemical Immunosensor for Detection of IgY in Food and Food Supplements. Chemosensors, 2017, 5, 10.	3.6	8
29	Electrochemical Immunosensors and Aptasensors. Chemosensors, 2017, 5, 13.	3.6	7
30	Graphene-based materials for the electrochemical determination of hazardous ions. Analytica Chimica Acta, 2016, 946, 9-39.	5.4	52
31	Pyrolyzed Photoresist Carbon Electrodes for Trace Electroanalysis of Nickel(II). Chemosensors, 2015, 3, 157-168.	3.6	6
32	Laser ablation-ICP-MS depth profiling to study ancient glass surface degradation. Analytical and Bioanalytical Chemistry, 2015, 407, 3377-3391.	3.7	10
33	Ensembles of Gold Nanowires for the Anodic Stripping Voltammetric Determination of Inorganic Arsenic. Journal of Nanoscience and Nanotechnology, 2015, 15, 3417-3422.	0.9	8
34	Detection of DNA Hybridization by Methylene Blue Electrochemistry at Activated Nanoelectrode Ensembles. Journal of Nanoscience and Nanotechnology, 2015, 15, 3437-3442.	0.9	26
35	Speciation of Trace Levels of Chromium with Bismuth Modified Pyrolyzed Photoresist Carbon Electrodes. Electroanalysis, 2015, 27, 128-134.	2.9	9
36	Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sensors and Actuators B: Chemical, 2015, 207, 186-192.	7.8	99

#	Article	IF	Citations
37	Electroanalytical Applications of Sensors Based on Pyrolized Photoresist Carbon Electrodes. Lecture Notes in Electrical Engineering, 2015, , 135-139.	0.4	1
38	ELECTRODES Nanoelectrodes â~†., 2015, , .		0
39	Pyrolyzed Photoresist Carbon Electrodes in Aprotic Solvent: Bilirubin Electrochemistry and Interaction with Electrogenerated Superoxide. Electrochimica Acta, 2014, 147, 401-407.	5. 2	10
40	Sprayed carbon nanotubes on Pyrolysed Photoresist Carbon Electrodes: Application to o-toluidine determination. Electrochemistry Communications, 2014, 48, 13-16.	4.7	6
41	Nafion \hat{A}^{\otimes} as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: the case of some artistic colouring agents. Analytical and Bioanalytical Chemistry, 2013, 405, 3603-3610.	3.7	9
42	Simultaneous Adsorptive Cathodic Stripping Voltammetric Determination of Nickel(II) and Cobalt(II) at an In Situ Bismuthâ€Modified Gold Electrode. Electroanalysis, 2013, 25, 2471-2479.	2.9	20
43	Bismuth modified gold nanoelectrode ensemble for stripping voltammetric determination of lead. Electrochemistry Communications, 2012, 24, 28-31.	4.7	20
44	Ion Exchange Voltammetry. , 2012, , 403-435.		1
45	Electroanalysis of Trace Inorganic Arsenic with Gold Nanoelectrode Ensembles. Electroanalysis, 2012, 24, 798-806.	2.9	50
46	Spectroscopic methods for the analysis of celadonite and glauconite in Roman green wall paintings. Journal of Cultural Heritage, 2011, 12, 384-391.	3.3	71
47	Modification of nanoelectrode ensembles by thiols and disulfides to prevent non specific adsorption of proteins. Electrochimica Acta, 2011, 56, 7718-7724.	5.2	26
48	Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology, 2011, 22, 185305.	2.6	41
49	Arrays of Nanoelectrodes: Critical Evaluation of Geometrical and Diffusion Characteristics with Respect to Electroanalytical Applications. ECS Transactions, 2010, 25, 33-38.	0.5	3
50	Electrochemiluminescence of loaded in Nafion Langmuir–Blodgett films: Role of the interfacial ultrathin film. Journal of Electroanalytical Chemistry, 2010, 640, 35-41.	3.8	46
51	Diffusion regimes at nanoelectrode ensembles in different ionic liquids. Electrochimica Acta, 2010, 55, 2865-2872.	5.2	36
52	Nanoelectrode ensembles for the direct voltammetric determination of trace iodide in water. International Journal of Environmental Analytical Chemistry, 2010, 90, 747-759.	3.3	15
53	ELECTRODES Nanoelectrodes. , 2009, , 92-102.		0
54	Epifluorescence Imaging of Electrochemically Switchable Langmuirâ^Blodgett Films of Nafion. Langmuir, 2008, 24, 6367-6374.	3.5	34

#	Article	IF	CITATIONS
55	Towards a Better Understanding of Gold Electroless Deposition in Track-Etched Templates. Chemistry of Materials, 2007, 19, 5955-5964.	6.7	83
56	TEMPLATE DEPOSITION OF METALS., 2007,, 678-709.		21
57	Biosensors based on gold nanoelectrode ensembles and screen printed electrodes. International Journal of Environmental Analytical Chemistry, 2007, 87, 701-714.	3.3	15
58	Caracter $ ilde{A}$ sticas $ ilde{A}$ 3pticas e morfol $ ilde{A}$ 3gicas de nanoestruturas de ouro. Quimica Nova, 2007, 30, .	0.3	4
59	Aplicações de nanoeletrodos como sensores na QuÃmica AnalÃŧica. Quimica Nova, 2006, 29, 1054-1060.	0.3	10
60	Composite films of poly-(ester-sulphonated) and poly-(3-methylthiophene) for ion-exchange voltammetry in acetonitrile solutions. Electrochimica Acta, 2006, 51, 2153-2160.	5.2	6
61	Ion-exchange voltammetry of tris(2,2′-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: Reactivity of the electrogenerated low-valent complexes. Electrochimica Acta, 2006, 52, 958-964.	5.2	26
62	Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. Analytica Chimica Acta, 2006, 575, 16-24.	5.4	64
63	Polycyclic aromatic hydrocarbons degradation by composting in a soot-contaminated alkaline soil. Journal of Hazardous Materials, 2005, 126, 141-148.	12.4	35
64	Electrochemistry of cytochrome c incorporated in Langmuir–Blodgett films of Nafion® and Eastman AQ 55®. Bioelectrochemistry, 2005, 66, 29-34.	4.6	24
65	Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Marine Chemistry, 2004, 91, 85-99.	2.3	75
66	Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles. Talanta, 2004, 62, 1055-1060.	5.5	59
67	A comparison of the speciation and fate of mercury in two contaminated coastal marine ecosystems: The Venice Lagoon (Italy) and Lavaca Bay (Texas). Limnology and Oceanography, 2004, 49, 367-375.	3.1	30
68	Direct voltammetry of cytochrome c at trace concentrations with nanoelectrode ensembles. Journal of Electroanalytical Chemistry, 2003, 560, 51-58.	3.8	60
69	Ionomer-Coated Electrodes and Nanoelectrode Ensembles as Electrochemical Environmental Sensors: Recent Advances and Prospects. ChemPhysChem, 2002, 3, 917-925.	2.1	114
70	Ion-exchange voltammetry and electrocatalytic sensing capabilities of cytochrome c at polyestersulfonated ionomer coated glassy carbon electrodes. Biosensors and Bioelectronics, 2002, 17, 479-487.	10.1	28
71	Iron(II) and iron(III) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes. Analytica Chimica Acta, 2002, 474, 147-160.	5.4	49
72	Determination of mercury in process and lagoon waters by inductively coupled plasma-mass spectrometric analysis after electrochemical preconcentration: comparison with anodic stripping at gold and polymer coated electrodes. Analytica Chimica Acta, 2001, 434, 291-300.	5.4	65

#	Article	IF	CITATIONS
73	Advances in multiple square wave techniques for ion-exchange voltammetry at ultratrace levels: the europium(III) case. Journal of Electroanalytical Chemistry, 2001, 498, 117-126.	3.8	29
74	Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. Journal of Electroanalytical Chemistry, 2000, 491, 166-174.	3.8	96
75	Multiple square wave voltammetry of nanomolar and subnanomolar concentrations of europium (III) at polymer-coated electrodes. Electrochemistry Communications, 2000, 2, 175-179.	4.7	18
76	Monitoring Sulphur Species and Metal Ions in Salt-Marsh Pore-Waters by Using an In-Situ Sampler. International Journal of Environmental Analytical Chemistry, 1999, 73, 129-143.	3.3	11
77	Determination of methylmercury at Nafion $\hat{A}^{@}$ coated electrodes by single and multiple pulse voltammetric techniques. Journal of Electroanalytical Chemistry, 1999, 467, 193-202.	3.8	23
78	Determination of Trace Mercury in Saltwaters at Screen-Printed Electrodes Modified with Sumichelate Q10R. Electroanalysis, 1998, 10, 1017-1021.	2.9	103
79	Electrochemical Preparation and Characterization of an Anion-Permselective Composite Membrane for Sensor Technology. Electroanalysis, 1998, 10, 1168-1173.	2.9	11
80	Nitrate Biosensor Based on the Ultrathin-Film Composite Membrane Concept. Analytical Chemistry, 1998, 70, 2163-2166.	6.5	73
81	Electroanalytical study on the ion-exchange voltammetric behaviour of Hg(II) at Tosflex®-coated glassy carbon electrodes. Journal of Electroanalytical Chemistry, 1997, 427, 113-121.	3.8	30
82	lon-exchange voltammetry of trace mercury(II) at glassy carbon electrodes coated with a cationic polypyrrole derivative. Application to pore-waters analysis. Electroanalysis, 1997, 9, 1153-1158.	2.9	40
83	lon-Exchange Voltammetry at Polymer Film-Coated Nanoelectrode Ensembles. Analytical Chemistry, 1996, 68, 4160-4165.	6.5	86
84	Voltammetric determination of trace mercury in chloride media at glassy carbon electrodes modified with polycationic ionomers. Analytica Chimica Acta, 1995, 305, 74-82.	5.4	80
85	Nitrate detection at Nafion-modified electrodes incorporating ytterbium and uranyl electrocatalysts. Electroanalysis, 1995, 7, 129-131.	2.9	8
86	lon-exchange voltammetry at polymer-coated electrodes: Principles and analytical prospects. Electroanalysis, 1995, 7, 1105-1113.	2.9	113
87	A kinetic investigation on Fe and Cu,Zn superoxide dismutases by polarography. Bioelectrochemistry, 1995, 36, 165-170.	1.0	5
88	A polarographic study of the catalytic mechanism of the iron-containing superoxide dismutase from Escherichia coli. Bioelectrochemistry, 1995, 38, 397-400.	1.0	3
89	Ion-exchange voltammetry of copper ions in chloride media at glassy carbon electrodes modified with polycationic ionomers. Analytica Chimica Acta, 1993, 273, 229-236.	5.4	32