Liang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371856/publications.pdf

Version: 2024-02-01

361045 253896 1,925 52 20 43 h-index citations g-index papers 54 54 54 2770 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A flexible organohydrogel-based humidity sensor for noncontact artificial sensation. Science China Technological Sciences, 2022, 65, 191-200.	2.0	4
2	Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors. Soft Matter, 2022, 18, 1201-1208.	1.2	9
3	Multi-responsive micro/nanogels for optical sensing. Advances in Physics: X, 2022, 7, .	1.5	2
4	Recent Advances in Hydrogel-Based Sensors Responding to Ionizing Radiation. Gels, 2022, 8, 238.	2.1	19
5	Direct ultrasensitive electrochemical detection of breast cancer biomarker-miRNA-21 employing an aptasensor based on a microgel nanoparticle composite. Sensors and Actuators B: Chemical, 2022, 367, 132067.	4.0	17
6	Development and Characterization of a Novel Hydrogel for the Decontaminating of Radionuclideâ€Contaminated Skin Wounds. Macromolecular Bioscience, 2021, 21, e2000399.	2.1	6
7	Fluorescent Nanogel Sensors for X-ray Dosimetry. ACS Sensors, 2021, 6, 1643-1648.	4.0	24
8	Stimuli-Responsive Polymers for Sensing and Reacting to Environmental Conditions. Progress in Polymer Science, 2021, 116, 101386.	11.8	56
9	Polythionine and gold nanostar-based impedimetric aptasensor for label-free detection of α-synuclein oligomers. Journal of Applied Electrochemistry, 2021, 51, 1523-1533.	1.5	10
10	Highly Strong, Stretchable, and Conductive Reduced Graphene Oxide Composite Hydrogel-Based Sensors for Motoring Strain and Pressure. ACS Applied Polymer Materials, 2021, 3, 5155-5161.	2.0	19
11	Recent advances in stimuli-responsive polymers for sensing and actuation. Molecular Systems Design and Engineering, 2021, 6, 108-121.	1.7	18
12	Highly transparent, antifreezing and stretchable conductive organohydrogels for strain and pressure sensors. Science China Technological Sciences, 2021, 64, 2532-2540.	2.0	8
13	Performance of a plastic scintillation fiber dosimeter based on different photoelectric devices. Nuclear Science and Techniques/Hewuli, $2021, 32, 1$.	1.3	6
14	Harnessing superhydrophobic coatings for enhancing the surface corrosion resistance of magnesium alloys. Journal of Materials Chemistry B, 2021, 9, 9893-9899.	2.9	15
15	Alkenyl aromatic polymer microspheres via \hat{l}^3 -ray irradiation-assisted self-assembly after free-radical polymerization. Radiation Physics and Chemistry, 2020, 169, 107904.	1.4	1
16	Harnessing the Power of Stimuliâ€Responsive Polymers for Actuation. Advanced Functional Materials, 2020, 30, 1903471.	7.8	88
17	Bioinspired tissue-compliant hydrogels with multifunctions for synergistic surgery–photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 10117-10125.	2.9	8
18	Stimuli-responsive polymer-based systems for diagnostic applications. Journal of Materials Chemistry B, 2020, 8, 7042-7061.	2.9	37

#	Article	IF	CITATIONS
19	Stimuliâ€Responsive Actuation: Harnessing the Power of Stimuliâ€Responsive Polymers for Actuation (Adv. Funct. Mater. 2/2020). Advanced Functional Materials, 2020, 30, 2070012.	7.8	2
20	A nanogel sensor for colorimetric fluorescence measurement of ionizing radiation doses. Chemical Communications, 2019, 55, 9614-9617.	2.2	21
21	Stimuli-responsive polymers for sensing and actuation. Materials Horizons, 2019, 6, 1774-1793.	6.4	223
22	Using \hat{l}^3 -Ray Polymerization-Induced Assemblies to Synthesize Polydopamine Nanocapsules. Polymers, 2019, 11, 1754.	2.0	6
23	Cadmium sulfide quantum dots/poly(acrylic acid-co-acrylic amide) composite hydrogel synthesized by gamma irradiation. Radiation Physics and Chemistry, 2018, 145, 130-134.	1.4	10
24	Polyelectrolyte-based physical adhesive hydrogels with excellent mechanical properties for biomedical applications. Journal of Materials Chemistry B, 2018, 6, 4799-4807.	2.9	40
25	Polystyrene-based Hollow Microsphere Synthesized by \hat{I}^3 -ray Irradiation-assisted Polymerization and Self-Assembly and Its Application in Detection of Ionizing Radiation. Scientific Reports, 2017, 7, 41876.	1.6	5
26	Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood. Journal of Materials Chemistry B, 2017, 5, 4876-4882.	2.9	22
27	Comparison of the Responsivity of Solution-Suspended and Surface-Bound Poly(<i>N</i> -isopropylacrylamide)-Based Microgels for Sensing Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 26539-26548.	4.0	26
28	Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13607-13614.	4.0	40
29	2D Confined-Space Assisted Growth of Molecular-Level-Thick Polypyrrole Sheets with High Conductivity and Transparency. Macromolecular Rapid Communications, 2016, 37, 590-596.	2.0	9
30	Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance. Advanced Materials, 2016, 28, 3399-3405.	11.1	337
31	Nanowire Oriented On-Surface Growth of Chiral Cystine Crystalline Nanosheets. Langmuir, 2015, 31, 8795-8801.	1.6	1
32	Photothermal-Responsive Single-Walled Carbon Nanotube-Based Ultrathin Membranes for On/Off Switchable Separation of Oil-in-Water Nanoemulsions. ACS Nano, 2015, 9, 4835-4842.	7.3	247
33	An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 23477-23482.	5.2	146
34	Ultrathin membranes of single-layered MoS ₂ nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7, 17649-17652.	2.8	130
35	Non-spherical Janus microgels driven by thiolated DNA interactions. Polymer, 2014, 55, 2340-2346.	1.8	2
36	Synthesis and self-aggregation of PTRIS-co-MMA polymer films via ARGET ATRP. Materials Letters, 2014, 120, 79-81.	1.3	6

#	Article	IF	Citations
37	The Influence of Deposition Solution pH and Ionic Strength on the Quality of Poly(<i>N</i> -isopropylacrylamide) Microgel-Based Thin Films and Etalons. ACS Applied Materials & Interfaces, 2013, 5, 11977-11983.	4.0	22
38	Controlling the response of color tunable poly(N-isopropylacrylamide) microgel-based etalons with hysteresis. Chemical Communications, 2013, 49, 2649.	2.2	40
39	Responsive polymers for analytical applications: A review. Analytica Chimica Acta, 2013, 789, 17-32.	2.6	82
40	Poly (<i>N</i> â€isopropylacrylamide) microgelâ€based assemblies. Journal of Polymer Science Part A, 2013, 51, 3004-3020.	2.5	30
41	Color-Tunable Etalons Assembled from Poly (N-Isopropylacrylamide) Based Microgels. Polymers, 2012, 4, 134-149.	2.0	24
42	Liquid–liquid interface assisted synthesis of multifunctional and multicomponent hydrogel particles. Journal of Materials Chemistry, 2012, 22, 20998.	6.7	7
43	Color modulation of spatially isolated regions on a single poly(N-isopropylacrylamide) microgel based etalon. Journal of Materials Chemistry, 2012, 22, 8199.	6.7	38
44	Interface assisted synthesis of complex hydrogel particles. Soft Matter, 2012, 8, 10095.	1.2	6
45	Study on Morphology and Mechanical Properties of PVC with Ultrafine CaCO3 Surface-modified by Acrylate Macromolecular Modifiers. Polymers and Polymer Composites, 2012, 20, 191-196.	1.0	O
46	Effect of annealing on self-organized gradient film obtained from poly(3-[tris(trimethylsilyloxy)silyl]) Tj ETQq0 0 (latexes. Colloid and Polymer Science, 2012, 290, 709-718.	o rgBT /Ov	erlock 10 Tf 5 16
47	Preparation and characterization of gradient distribution of silicon in emulsion blend films. Colloid and Polymer Science, 2011, 289, 323-331.	1.0	3
48	Antiplasticizing effect of MOCA on poly(vinyl chloride). Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 83-87.	0.4	4
49	EFFECT OF FLUORINATED POLYACRYLATE CONTENT ON THE GRADIENT STRUCTURE AND SURFACE PROPERTY OF FLUORINATED/NON-FLUORINATED POLYACRYLATE LATEX BLEND FILMS. Acta Polymerica Sinica, 2011, 011, 838-844.	0.0	4
50	Preparation and structure of fluorinated/non-fluorinated polyacrylate gradient emulsion blend film. Materials Letters, 2010, 64, 2091-2093.	1.3	14
51	Synthesis and silicon gradient distribution of emulsifier-free TRIS-containing acrylate copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370, 72-78.	2.3	12
52	Self-Stratification Silicon Gradient Film Prepared by Emulsion Blend Technique. Advanced Materials Research, 0, 233-235, 2145-2149.	0.3	2