Chongyi Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371755/publications.pdf Version: 2024-02-01

CHONCYLLINC

#	Article	IF	CITATIONS
1	Metal-Free Single Atom Catalyst for N ₂ Fixation Driven by Visible Light. Journal of the American Chemical Society, 2018, 140, 14161-14168.	6.6	742
2	Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano Letters, 2017, 17, 5133-5139.	4.5	395
3	Activating Inert Basal Planes of MoS ₂ for Hydrogen Evolution Reaction through the Formation of Different Intrinsic Defects. Chemistry of Materials, 2016, 28, 4390-4396.	3.2	388
4	A General Twoâ€Step Strategy–Based Highâ€Throughput Screening of Single Atom Catalysts for Nitrogen Fixation. Small Methods, 2019, 3, 1800376.	4.6	303
5	Transition Metalâ€Promoted V ₂ CO ₂ (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction. Advanced Science, 2016, 3, 1600180.	5.6	279
6	Searching for Highly Active Catalysts for Hydrogen Evolution Reaction Based on O-Terminated MXenes through a Simple Descriptor. Chemistry of Materials, 2016, 28, 9026-9032.	3.2	247
7	Single Molybdenum Atom Anchored on N-Doped Carbon as a Promising Electrocatalyst for Nitrogen Reduction into Ammonia at Ambient Conditions. Journal of Physical Chemistry C, 2018, 122, 16842-16847.	1.5	223
8	Ethylene Selectivity in Electrocatalytic CO ₂ Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. Journal of the American Chemical Society, 2020, 142, 12760-12766.	6.6	183
9	New Mechanism for N ₂ Reduction: The Essential Role of Surface Hydrogenation. Journal of the American Chemical Society, 2019, 141, 18264-18270.	6.6	166
10	Defect Engineering for Modulating the Trap States in 2D Photoconductors. Advanced Materials, 2018, 30, e1804332.	11.1	146
11	Highly Efficient Photo-/Electrocatalytic Reduction of Nitrogen into Ammonia by Dual-Metal Sites. ACS Central Science, 2020, 6, 1762-1771.	5.3	135
12	Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20, 1113-1120.	13.3	119
13	High intrinsic catalytic activity of two-dimensional boron monolayers for the hydrogen evolution reaction. Nanoscale, 2017, 9, 533-537.	2.8	116
14	Metal-free electrocatalyst for reducing nitrogen to ammonia using a Lewis acid pair. Journal of Materials Chemistry A, 2019, 7, 4865-4871.	5.2	115
15	Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. Journal of the American Chemical Society, 2020, 142, 18971-18980.	6.6	111
16	Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. Journal of Materials Chemistry A, 2019, 7, 2275-2282.	5.2	105
17	Hybrid Cu ⁰ and Cu <i>^x</i> ⁺ as Atomic Interfaces Promote Highâ€Selectivity Conversion of CO ₂ to C ₂ H ₅ OH at Low Potential. Small, 2020, 16, e1901981.	5.2	92
18	Heterophase fcc-2H-fcc gold nanorods. Nature Communications, 2020, 11, 3293.	5.8	92

Chongyi Ling

#	Article	IF	CITATIONS
19	Towards a Comprehensive Understanding of the Reaction Mechanisms Between Defective MoS ₂ and Thiol Molecules. Angewandte Chemie - International Edition, 2017, 56, 10501-10505.	7.2	88
20	Preparation of Au@Pd Core–Shell Nanorods with <i>fcc</i> -2H- <i>fcc</i> Heterophase for Highly Efficient Electrocatalytic Alcohol Oxidation. Journal of the American Chemical Society, 2022, 144, 547-555.	6.6	88
21	Template-Grown MoS ₂ Nanowires Catalyze the Hydrogen Evolution Reaction: Ultralow Kinetic Barriers with High Active Site Density. ACS Catalysis, 2017, 7, 5097-5102.	5.5	78
22	Computation-Aided Design of Single-Atom Catalysts for One-Pot CO ₂ Capture, Activation, and Conversion. ACS Applied Materials & amp; Interfaces, 2018, 10, 36866-36872.	4.0	70
23	A Ti ₃ C ₂ O ₂ supported single atom, trifunctional catalyst for electrochemical reactions. Journal of Materials Chemistry A, 2020, 8, 7801-7807.	5.2	69
24	Versatile Electronic and Magnetic Properties of SnSe ₂ Nanostructures Induced by the Strain. Journal of Physical Chemistry C, 2014, 118, 9251-9260.	1.5	68
25	Synthesis of Pd ₃ Sn and PdCuSn Nanorods with <i>L1₂</i> Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. Advanced Materials, 2022, 34, e2106115.	11.1	65
26	Oxidation Mechanism and Protection Strategy of Ultrathin Indium Selenide: Insight from Theory. Journal of Physical Chemistry Letters, 2017, 8, 4368-4373.	2.1	62
27	Predicting a new class of metal-organic frameworks as efficient catalyst for bi-functional oxygen evolution/reduction reactions. Journal of Catalysis, 2018, 367, 206-211.	3.1	61
28	Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Science Bulletin, 2018, 63, 1397-1403.	4.3	61
29	Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chinese Journal of Catalysis, 2021, 42, 482-489.	6.9	61
30	Seeded Synthesis of Unconventional 2H-Phase Pd Alloy Nanomaterials for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 17292-17299.	6.6	59
31	Perspective on theoretical methods and modeling relating to electro-catalysis processes. Chemical Communications, 2020, 56, 9937-9949.	2.2	52
32	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883.	6.6	49
33	Molybdenum sulfide clusters immobilized on defective graphene: a stable catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 2289-2294.	5.2	44
34	Mechanical Properties, Electronic Structures, and Potential Applications in Lithium Ion Batteries: A First-Principles Study toward SnSe ₂ Nanotubes. Journal of Physical Chemistry C, 2014, 118, 28291-28298.	1.5	37
35	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	5.2	37
36	Methane dehydrogenation on Au/Ni surface alloys – a first-principles study. Catalysis Science and Technology, 2013, 3, 1343.	2.1	36

#	Article	IF	CITATIONS
37	Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics. Npj Quantum Materials, 2017, 2, .	1.8	36

Screening of effective NRR electrocatalysts among the Si-based MSi₂N₄ (M =) Tj ETQq0 $\begin{array}{c} 0.0 \\ 5.2 \end{array}$ rgBT /Qyerlock 10

39	Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Research, 2020, 13, 1970-1975.	5.8	32
40	Water adsorption and dissociation on Ni surface: Effects of steps, dopants, coverage and self-aggregation. Physical Chemistry Chemical Physics, 2013, 15, 17804.	1.3	28
41	Versatile Titanium Silicide Monolayers with Prominent Ferromagnetic, Catalytic, and Superconducting Properties: Theoretical Prediction. Journal of Physical Chemistry Letters, 2016, 7, 3723-3729.	2.1	28
42	Accelerated Discovery of Singleâ€Atom Catalysts for Nitrogen Fixation via Machine Learning. Energy and Environmental Materials, 2023, 6, .	7.3	26
43	SnS ₂ nanotubes: a promising candidate for the anode material for lithium ion batteries. RSC Advances, 2015, 5, 32505-32510.	1.7	24
44	Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. Nanoscale, 2020, 12, 10964-10971.	2.8	24
45	Edge-, width- and strain-dependent semiconductor–metal transition in SnSe nanoribbons. RSC Advances, 2014, 4, 6933.	1.7	23
46	Forming Atom–Vacancy Interface on the MoS 2 Catalyst for Efficient Hydrodeoxygenation Reactions. Small Methods, 2019, 3, 1800315.	4.6	23
47	How computations accelerate electrocatalyst discovery. CheM, 2022, 8, 1575-1610.	5.8	23
48	Photocatalytic conversion of CO to fuels with water by B-doped graphene/g-C3N4 heterostructure. Science Bulletin, 2021, 66, 1186-1193.	4.3	19
49	Tuning electronic and magnetic properties of SnSe ₂ armchair nanoribbons via edge hydrogenation. Journal of Materials Chemistry C, 2014, 2, 10175-10183.	2.7	17
50	Do Ni/Cu and Cu/Ni Alloys have Different Catalytic Performances towards Waterâ€Gas Shift? A Density Functional Theory Investigation. ChemPhysChem, 2014, 15, 2490-2496.	1.0	17
51	Synergistic Effect of Metal Doping and Tethered Ligand Promoted Highâ€Selectivity Conversion of CO ₂ to C ₂ Oxygenates at Ultraâ€Low Potential. Energy and Environmental Materials, 2022, 5, 892-898.	7.3	14
52	Width- and edge-dependent magnetic properties, electronic structures, and stability of SnSe2 nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 102-106.	1.3	13
53	Hydrogen Activation on the Promoted and Unpromoted ReS2 (001) Surfaces under the Sulfidation Conditions: A First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 17092-17101.	1.5	12
54	Role of Au in Graphene Growth on a Ni Surface. ACS Catalysis, 2014, 4, 892-902.	5.5	8

Chongyi Ling

#	Article	IF	CITATIONS
55	Unveiling chemical reactivity and oxidation of 1T-phased group VI disulfides. Physical Chemistry Chemical Physics, 2019, 21, 17010-17017.	1.3	7
56	Density Functional Theory Investigation of Structure–Activity Relationship for Efficient Electrochemical CO ₂ Reduction on Defective SnSe ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2760-2767.	2.4	6
57	Edge promotion and basal plane activation of MoS2 catalyst by isolated Co atoms for hydrodesulfurization and hydrodenitrogenation. Catalysis Today, 2020, 350, 56-63.	2.2	5
58	Towards a Comprehensive Understanding of the Reaction Mechanisms Between Defective MoS ₂ and Thiol Molecules. Angewandte Chemie, 2017, 129, 10637-10641.	1.6	4