List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Research, 2022, 15, 2545-2551.	5.8	26
2	A confined carbon dot-based self-calibrated fluorescence probe for visible and highly sensitive moisture readouts. Journal Physics D: Applied Physics, 2022, 55, 154001.	1.3	2
3	Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Research, 2022, 15, 3711-3719.	5.8	44
4	Pentaheptite diamond: a new carbon allotrope. Journal of Physics Condensed Matter, 2022, 34, 184003.	0.7	0
5	Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis. Rare Metals, 2022, 41, 1583-1594.	3.6	29
6	Recycling Synthetic Route to Full-Color Fluorescent Carbon Nanodots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1624-1632.	3.2	13
7	Localized Excitonic Electroluminescence from Carbon Nanodots. Journal of Physical Chemistry Letters, 2022, 13, 1587-1595.	2.1	18
8	Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. Journal of Materials Chemistry C, 2022, 10, 6488-6496.	2.7	14
9	Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12, 2860-2893.	4.6	44
10	Ultrasensitive monolayer-MoS2 heterojunction photodetectors realized via an asymmetric Fabry-Perot cavity. Science China Materials, 2022, 65, 1861-1868.	3.5	5
11	Nearâ€infrared chemiluminescent carbon nanogels for oncology imaging and therapy. SmartMat, 2022, 3, 269-285.	6.4	20
12	Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices. Nano Energy, 2022, 95, 107061.	8.2	30
13	Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Research, 2022, 15, 4395-4402.	5.8	19
14	Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chemistry, 2022, 388, 132994.	4.2	5
15	Ultraviolet phosphorescent carbon nanodots. Light: Science and Applications, 2022, 11, .	7.7	33
16	Integrated, self-powered, and omni-transparent flexible electroluminescent display system. Nano Energy, 2022, 99, 107392.	8.2	20
17	Ga ₂ O ₃ -Based Solar-Blind Position-Sensitive Detector for Noncontact Measurement and Optoelectronic Demodulation. Nano Letters, 2022, 22, 4888-4896.	4.5	27
18	Meter-scale chemiluminescent carbon nanodot films for temperature imaging. Materials Horizons, 2022, 9, 2533-2541.	6.4	8

#	Article	IF	CITATIONS
19	Back Cover Image: Volume 3 Issue 2. SmartMat, 2022, 3, .	6.4	Ο
20	Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy, 2022, 101, 107549.	8.2	44
21	Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon, 2021, 173, 427-432.	5.4	39
22	Tungstate-modulated Ni/Ni(OH) ₂ interface for efficient hydrogen evolution reaction in neutral media. Journal of Materials Chemistry A, 2021, 9, 1456-1462.	5.2	57
23	Functional differentiation and regulation of follicular T helper cells in inflammation and autoimmunity. Immunology, 2021, 163, 19-32.	2.0	20
24	The kinase AKT1 potentiates the suppressive functions of myeloid-derived suppressor cells in inflammation and cancer. Cellular and Molecular Immunology, 2021, 18, 1074-1076.	4.8	7
25	The direct and indirect regulation of follicular T helper cell differentiation in inflammation and cancer. Journal of Cellular Physiology, 2021, 236, 5466-5481.	2.0	13
26	Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Research, 2021, 14, 2231-2240.	5.8	41
27	Lifetimeâ€Engineered Carbon Nanodots for Time Division Duplexing. Advanced Science, 2021, 8, 2003433.	5.6	54
28	Humidity Sensors Realized via Negative Photoconductivity Effect in Nanodiamonds. Journal of Physical Chemistry Letters, 2021, 12, 4079-4084.	2.1	18
29	Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga ₂ O ₃ . Chinese Physics B, 2021, 30, 078504.	0.7	6
30	Trigonal Nitrogen Activates High-Brightness Chemiluminescent Carbon Nanodots. , 2021, 3, 826-837.		17
31	Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter, 2021, 4, 1625-1638.	5.0	52
32	Stable Ultrathin Perovskite/Polyvinylidene Fluoride Composite Films for Imperceptible Multi olor Fluorescent Anti ounterfeiting Labels. Advanced Materials Technologies, 2021, 6, 2100229.	3.0	26
33	Flexible and Biocompatible Physical Unclonable Function Antiâ€Counterfeiting Label. Advanced Functional Materials, 2021, 31, 2102108.	7.8	52
34	Computational Prediction of a Novel Superhard sp ³ Trigonal Carbon Allotrope with Bandgap Larger than Diamond. Chinese Physics Letters, 2021, 38, 076101.	1.3	14
35	Autologous transplantation of thecal stem cells restores ovarian function in nonhuman primates. Cell Discovery, 2021, 7, 75.	3.1	9
36	MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy, 2021, 86, 106077.	8.2	44

#	Article	IF	CITATIONS
37	Surface chemical engineering towards efficient and bright chemiluminescent carbon nanodots. Applied Surface Science, 2021, 559, 149947.	3.1	8
38	N 6 â€methyladenosine RNA methylation: A novel regulator of the development and function of immune cells. Journal of Cellular Physiology, 2021, , .	2.0	13
39	Mechanoluminescent hybrids from a natural resource for energyâ€related applications. InformaÄnÃ- Materiály, 2021, 3, 1272-1284.	8.5	53
40	Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. Nanotechnology, 2021, 32, 475204.	1.3	18
41	Towards efficient carbon nanodot-based electromagnetic microwave absorption via nitrogen doping. Applied Surface Science, 2021, 567, 150897.	3.1	10
42	Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Materials and Design, 2021, 210, 110091.	3.3	68
43	Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution. ACS Nano, 2021, 15, 16242-16254.	7.3	94
44	Gram-scale and solvent-free synthesis of Mn-doped lead halide perovskite nanocrystals. Journal of Alloys and Compounds, 2020, 815, 152393.	2.8	11
45	Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 287.	1.8	45
46	Flexible, Conformable Organic Semiconductor Proximity Sensor Array for Electronic Skin. Advanced Materials Interfaces, 2020, 7, 2000306.	1.9	32
47	Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today, 2020, 34, 100900.	6.2	147
48	Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light: Science and Applications, 2020, 9, 44.	7.7	122
49	Nearâ€Infrared Chemiluminescent Carbon Nanodots and Their Application in Reactive Oxygen Species Bioimaging. Advanced Science, 2020, 7, 1903525.	5.6	143
50	Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Research, 2020, 13, 875-881.	5.8	51
51	Modulation on the electronic properties and band gap of layered ReSe2 via strain engineering. Journal of Alloys and Compounds, 2020, 827, 154364.	2.8	13
52	Efficient chemiluminescent ZnO nanoparticles for cellular imaging. Journal of Luminescence, 2020, 221, 117111.	1.5	25
53	Mixed-dimensional PdSe ₂ /SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Journal of Materials Chemistry A, 2020, 8, 3632-3642.	5.2	158
54	Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency. Advanced Optical Materials, 2020, 8, 1901938.	3.6	74

#	Article	IF	CITATIONS
55	Crucial role of histone deacetylase SIRT1 in myeloid-derived suppressor cell-mediated reprogramming of CD4+ T-cell differentiation. Cellular and Molecular Immunology, 2020, 17, 785-787.	4.8	7
56	Glucocorticoids Promote the Onset of Acute Experimental Colitis and Cancer by Upregulating mTOR Signaling in Intestinal Epithelial Cells. Cancers, 2020, 12, 945.	1.7	16
57	IL-9 and Th9 Cells in Tumor Immunity. Advances in Experimental Medicine and Biology, 2020, 1240, 35-46.	0.8	14
58	Enhancing the mechanoluminescence of traditional ZnS:Mn phosphors via Li+ Co-doping. Journal of Luminescence, 2020, 225, 117364.	1.5	18
59	Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today, 2020, 35, 100954.	6.2	138
60	Reprintable paper realized employing ZnO-based photocatalytic color conversion of dyes. Journal Physics D: Applied Physics, 2020, 53, 465107.	1.3	5
61	Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose. Nanophotonics, 2020, 9, 3597-3604.	2.9	34
62	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900090.	3.3	80
63	Broadband photodetection of 2D Bi2O2Se–MoSe2 heterostructure. Journal of Materials Science, 2019, 54, 14742-14751.	1.7	46
64	Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator. Nano Energy, 2019, 58, 410-418.	8.2	68
65	Ultrasensitive Mechano-Stimuli Luminescence Enhancement in ZnO Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 3557-3562.	2.1	10
66	Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Advanced Science, 2019, 6, 1802331.	5.6	120
67	A self-calibrated luminescent thermometer based on nanodiamond-Eu/Tb hybrid materials. Dalton Transactions, 2019, 48, 7910-7917.	1.6	13
68	Piezo-phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells. ACS Nano, 2019, 13, 4507-4513.	7.3	82
69	Immune effects of glycolysis or oxidative phosphorylation metabolic pathway in protecting against bacterial infection. Journal of Cellular Physiology, 2019, 234, 20298-20309.	2.0	34
70	A ratiometric fluorescent nanoprobe based on quenched carbon dots-rhodamine B for selective detection of l-cysteine. Journal of Alloys and Compounds, 2019, 788, 615-622.	2.8	31
71	HIF1α-Dependent Metabolic Signals Control the Differentiation of Follicular Helper T Cells. Cells, 2019, 8, 1450.	1.8	27
72	Neuroprotective Effect of Dichloromethane Extraction From Piper nigrum L. and Piper longum L. on Permanent Focal Cerebral Ischemia Injury in Rats. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 751-760.	0.7	21

#	Article	IF	CITATIONS
73	Diamond based photodetectors for solar-blind communication. Optics Express, 2019, 27, 29962.	1.7	65
74	Controlled Homoepitaxial Growth of Hybrid Perovskites. Advanced Materials, 2018, 30, e1705992.	11.1	82
75	Tailoring the emission of Eu based hybrid materials for light-emitting diodes application. Journal of Luminescence, 2018, 200, 274-279.	1.5	6
76	Carbon-ZnO alternating quantum dot chains: electrostatic adsorption assembly and white light-emitting device application. Nanoscale, 2018, 10, 7155-7162.	2.8	38
77	Luminescent hybrid materials based on nanodiamonds. Carbon, 2018, 127, 170-176.	5.4	21
78	Solution Processed Trilayer Structure for High-Performance Perovskite Photodetector. Nanoscale Research Letters, 2018, 13, 399.	3.1	42
79	Diamondâ€Based Allâ€Carbon Photodetectors for Solarâ€Blind Imaging. Advanced Optical Materials, 2018, 6, 1800068.	3.6	117
80	Effective light scattering and charge separation in nanodiamond@g-C3N4 for enhanced visible-light hydrogen evolution. Carbon, 2018, 139, 164-171.	5.4	42
81	In-situ embedding of carbon dots in a trisodium citrate crystal matrix for tunable solid-state fluorescence. Carbon, 2018, 136, 359-368.	5.4	78
82	Self-powered diamond/β-Ga ₂ O ₃ photodetectors for solar-blind imaging. Journal of Materials Chemistry C, 2018, 6, 5727-5732.	2.7	270
83	Point spread function of incoherent digital holography based on spiral phase modulation. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 014203.	0.2	3
84	Europium-decorated ZnO quantum dots as a fluorescent sensor for the detection of an anthrax biomarker. Journal of Materials Chemistry C, 2017, 5, 1685-1691.	2.7	59
85	Near-infrared light-emitting devices from individual heavily Ga-doped ZnO microwires. Journal of Materials Chemistry C, 2017, 5, 2542-2551.	2.7	20
86	Rewritable Painting Realized from Ambient-Sensitive Fluorescence of ZnO Nanoparticles. Scientific Reports, 2017, 7, 42232.	1.6	18
87	Light-Emission Enhancement in a Flexible and Size-Controllable ZnO Nanowire/Organic Light-Emitting Diode Array by the Piezotronic Effect. ACS Photonics, 2017, 4, 1344-1349.	3.2	65
88	Advanced encryption based on fluorescence quenching of ZnO nanoparticles. Journal of Materials Chemistry C, 2017, 5, 7167-7173.	2.7	42
89	Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy, 2017, 34, 578-585.	8.2	128
90	Piezophototronicâ€Effectâ€Enhanced Electrically Pumped Lasing. Advanced Materials, 2017, 29, 1602832.	11.1	35

#	Article	IF	CITATIONS
91	Edge contrast enhancement of Fresnel incoherent correlation holography (FINCH) microscopy by spatial light modulator aided spiral phase modulation. Optics Express, 2017, 25, 29207.	1.7	19
92	Efficiency enhance the photoluminescence of ZnO nanowires array by the surface plasmonic effect of Au nanoparticles. International Journal of Nanomanufacturing, 2016, 12, 308.	0.3	0
93	Functional Devices for Clean Energy and Advanced Sensor Applications. Journal of Nanomaterials, 2016, 2016, 1-2.	1.5	0
94	Recent progress of ZnO hierarchical nanostructure for photovoltaic application. International Journal of Nanomanufacturing, 2016, 12, 336.	0.3	2
95	CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. Nanoscale, 2016, 8, 8078-8082.	2.8	78
96	Growth of GaN micro/nanolaser arrays by chemical vapor deposition. Nanotechnology, 2016, 27, 355201.	1.3	8
97	CdS@SiO ₂ Core-Shell Electroluminescent Nanorod Arrays Based on a Metal-Insulator-Semiconductor Structure. Small, 2016, 12, 5734-5740.	5.2	14
98	Selfâ€Powered Highâ€Resolution and Pressureâ€Sensitive Triboelectric Sensor Matrix for Realâ€Time Tactile Mapping. Advanced Materials, 2016, 28, 2896-2903.	11.1	344
99	Preparation of multistage sheet-cluster ZnO photoanode via a solid state reaction and its property in DSSCs. Chemical Research in Chinese Universities, 2016, 32, 437-442.	1.3	2
100	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	5.6	789
101	Enhancing Light Emission of ZnOâ€Nanofilm/Siâ€Micropillar Heterostructure Arrays by Piezoâ€Phototronic Effect. Advanced Materials, 2015, 27, 4447-4453.	11.1	81
102	Recent Progress in Ohmic/Schottky-Contacted ZnO Nanowire Sensors. Journal of Nanomaterials, 2015, 2015, 1-20.	1.5	10
103	Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Advanced Materials, 2015, 27, 2324-2331.	11.1	468
104	Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy, 2015, 14, 364-371.	8.2	92
105	Mechanically Induced Light Emission and Infrared-Laser-Induced Upconversion in the Er-Doped CaZnOS Multifunctional Piezoelectric Semiconductor for Optical Pressure and Temperature Sensing. Journal of Physical Chemistry C, 2015, 119, 28136-28142.	1.5	123
106	A damage assessment model of oil spill accident combining historical data and satellite remote sensing information: A case study in Penglai 19-3 oil spill accident of China. Marine Pollution Bulletin, 2015, 91, 258-271.	2.3	34
107	Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–x Ge x alloy heterojunction. Nano Research, 2015, 8, 2676-2685.	5.8	16
108	Flexible and Controllable Piezoâ€₽hototronic Pressure Mapping Sensor Matrix by ZnO NW/pâ€₽olymer LED Array. Advanced Functional Materials, 2015, 25, 2884-2891.	7.8	200

#	Article	IF	CITATIONS
109	A Novel Strategy for the Synthesis of CeO2/CeF3 Composite Powders with Improved Suspension Stability and Chemical Mechanical Polishing (CMP) Performance. Arabian Journal for Science and Engineering, 2015, 40, 2897-2901.	1.1	4
110	Preparation and Photoelectric Properties of ZnO Arrays with Top Hollow Pits. Asian Journal of Chemistry, 2014, 26, 8277-8280.	0.1	1
111	Electrochemical Cathodic Protection Powered by Triboelectric Nanogenerator. Advanced Functional Materials, 2014, 24, 6691-6699.	7.8	104
112	Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Research, 2014, 7, 1083-1091.	5.8	81
113	Flexible quantum dot-sensitized solar cells employing CoS nanorod arrays/graphite paper as effective counter electrodes. Journal of Materials Chemistry A, 2014, 2, 13661.	5.2	80
114	High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7, 752-758.	15.6	641
115	Gas Dielectric Transistor of CuPc Single Crystalline Nanowire for SO ₂ Detection Down to Subâ€ppm Levels at Room Temperature. Advanced Materials, 2013, 25, 2269-2273.	11.1	158
116	Sensors: Gas Dielectric Transistor of CuPc Single Crystalline Nanowire for SO ₂ Detection Down to Subâ€ppm Levels at Room Temperature (Adv. Mater. 16/2013). Advanced Materials, 2013, 25, 2376-2376.	11.1	5
117	Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources. Materials, 2013, 6, 1543-1553.	1.3	8
118	Chemical bond change of gibbsite and fumed silica mixture during mechanical activation. Materials Letters, 2012, 85, 91-94.	1.3	14
119	Piezoâ€Phototronic Effect of CdSe Nanowires. Advanced Materials, 2012, 24, 5470-5475.	11.1	77
120	Enhanced Cu ₂ S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. Nano Letters, 2012, 12, 3302-3307.	4.5	174
121	Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics. Advanced Materials, 2012, 24, 3532-3537.	11.1	114
122	Optical Fiberâ€Based Core–Shell Coaxially Structured Hybrid Cells for Selfâ€Powered Nanosystems. Advanced Materials, 2012, 24, 3356-3361.	11.1	80
123	Morphology-Controlled Synthesis of 1D ZnO Nanostructures by Hydrothermal Technique. Advanced Materials Research, 2011, 266, 17-21.	0.3	0
124	Grain Size Control of Calcined SnO ₂ Nanocrystals: Raman Study and Room Temperature Ethanol Sensing Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 3592-3596.	0.9	4
125	Catalyst-free growth of well-aligned arsenic-doped ZnO nanowires by chemical vapor deposition method. Applied Surface Science, 2010, 257, 1084-1087.	3.1	24
126	Preparation and characterization of nitrogen-doped titania nanotubes. Materials Letters, 2009, 63, 1598-1600.	1.3	25

#	Article	IF	CITATIONS
127	Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays. Transactions of Nonferrous Metals Society of China, 2009, 19, 1583-1587.	1.7	38
128	Growth and optical properties of ZnO nanostructures by vapor transport process. Materials Chemistry and Physics, 2007, 103, 190-194.	2.0	11
129	Growth and optical properties of ZnO nanorods by introducing ZnO sols prior to hydrothermal process. Materials Letters, 2007, 61, 3578-3581.	1.3	19
130	Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique. Journal of Physical Chemistry B, 2006, 110, 20263-20267.	1.2	207
131	Preparation of ZnO colloids by aggregation of the nanocrystal subunits. Journal of Colloid and Interface Science, 2005, 283, 380-384.	5.0	55
132	Real-time holographic gratings recorded by He–Ne laser in polymer films containing spirooxazine compounds pre-irradiated by UV light. Optical Materials, 2005, 27, 1567-1570.	1.7	11
133	Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing. Chemical Physics Letters, 2005, 413, 450-453.	1.2	62
134	Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films. Materials Letters, 2005, 59, 1449-1452.	1.3	8
135	The effect of surface properties on visible luminescence of nanosized colloidal ZnO membranes. Journal of Colloid and Interface Science, 2005, 282, 403-407.	5.0	22
136	The structural and optical properties of ZnO nanorod arrays. Solid State Communications, 2005, 135, 179-182.	0.9	98
137	Photoluminescence properties of catalyst-free growth of needle-like ZnO nanowires. Nanotechnology, 2005, 16, 609-612.	1.3	53
138	The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral. Journal of Sol-Gel Science and Technology, 2004, 30, 157-161.	1.1	74
139	Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light. Optics Communications, 2004, 242, 115-122.	1.0	22
140	Two-Dimensional Ordered Arrays of Silica Nanoparticles. Chemistry of Materials, 2000, 12, 3662-3666.	3.2	35
141	Deposition of ZnO:Al Thin Films by Ultrasonic Spray Pyrolysis. Advanced Materials Research, 0, 150-151, 1617-1620.	0.3	1
142	Grain Size Control and Ethanol Sensing Properties of Calcined SnO ₂ Nanoparticles. Advanced Materials Research, 0, 266, 76-79.	0.3	0