Alan H Schulman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371603/publications.pdf

Version: 2024-02-01

31902 17546 16,391 130 53 121 citations g-index h-index papers 139 139 139 14502 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8, 973-982.	7.7	2,396
2	Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463, 763-768.	13.7	1,685
3	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	13.7	1,416
4	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	13.7	1,365
5	Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6603-6607.	3.3	553
6	IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 1999, 98, 704-711.	1.8	468
7	Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell, 1999, 11, 1769-1784.	3.1	333
8	A Contiguous 66-kb Barley DNA Sequence Provides Evidence for Reversible Genome Expansion. Genome Research, 2000, 10, 908-915.	2.4	285
9	Anchoring and ordering <scp>NGS</scp> contig assemblies by population sequencing (<scp>POPSEQ</scp>). Plant Journal, 2013, 76, 718-727.	2.8	264
10	The genome of cowpea (<i>Vigna unguiculata</i> [L.] Walp.). Plant Journal, 2019, 98, 767-782.	2.8	264
11	IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols, 2006, 1, 2478-2484.	5.5	224
12	iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 2010, 121, 1419-1430.	1.8	223
13	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	9.4	221
14	Analysis of plant diversity with retrotransposon-based molecular markers. Heredity, 2011, 106, 520-530.	1.2	213
15	Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 2018, 9, 3735.	5.8	204
16	BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Molecular Biology, 1993, 22, 829-846.	2.0	197
17	The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Communications, 2014, 5, 4737.	5.8	196
18	The International Barley Sequencing Consortium—At the Threshold of Efficient Access to the Barley Genome Â. Plant Physiology, 2009, 149, 142-147.	2.3	195

#	Article	IF	CITATIONS
19	Active Retrotransposons Are a Common Feature of Grass Genomes. Plant Physiology, 2001, 125, 1283-1292.	2.3	188
20	TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biology, 2019, 20, 284.	3.8	179
21	Retrotransposons and Genomic Stability in Populations of the Young Allopolyploid Species Spartina anglica C.E. Hubbard (Poaceae). Molecular Biology and Evolution, 2002, 19, 1218-1227.	3.5	168
22	Gypsyâ€ike retrotransposons are widespread in the plant kingdom. Plant Journal, 1998, 13, 699-705.	2.8	166
23	Large Retrotransposon Derivatives: Abundant, Conserved but Nonautonomous Retroelements of Barley and Related Genomes. Genetics, 2004, 166, 1437-1450.	1.2	157
24	Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 2018, 24, 1291-1307.	4.2	149
25	Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics, 2011, 98, 137-144.	1.3	146
26	An atlas of gene expression from seed to seed through barley development. Functional and Integrative Genomics, 2006, 6, 202-211.	1.4	138
27	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	9.4	138
28	Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome. Heredity, 2006, 97, 381-388.	1.2	136
29	Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Molecular Genetics and Genomics, 2000, 264, 325-334.	1.0	135
30	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	2.4	130
31	Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Molecular Biology, 1996, 30, 1321-1329.	2.0	128
32	<i>Cassandra</i> retrotransposons carry independently transcribed 5S RNA. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5833-5838.	3.3	127
33	Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics, 2011, 122, 1385-1397.	1.8	127
34	The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Molecular Biology, 1996, 31, 295-306.	2.0	121
35	Molecular markers to assess genetic diversity. Euphytica, 2007, 158, 313-321.	0.6	114
36	Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Current Biology, 2019, 29, 3041-3052.e4.	1.8	109

#	Article	IF	CITATIONS
37	A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Molecular Biology, 2002, 48, 767-789.	2.0	95
38	Structural and Temporal Variation in Genetic Diversity of European Spring Twoâ€Row Barley Cultivars and Association Mapping of Quantitative Traits. Plant Genome, 2013, 6, plantgenome2013.03.0007.	1.6	95
39	Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Molecular Genetics and Genomics, 2003, 269, 464-474.	1.0	87
40	Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Molecular Genetics and Genomics, 1999, 261, 883-891.	2.4	86
41	Envelope-Class Retrovirus-Like Elements Are Widespread, Transcribed and Spliced, and Insertionally Polymorphic in Plants. Genome Research, 2001, 11, 2041-2049.	2.4	86
42	The Application of LTR Retrotransposons as Molecular Markers in Plants. , 2004, 260, 145-174.		85
43	Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA, 2010, 1, 6.	1.3	85
44	Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 2017, 82, 144-162.	1.9	84
45	Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends in Food Science and Technology, 2019, 91, 549-556.	7.8	84
46	TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics, 2006, 112, 999-1008.	1.8	79
47	Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. Journal of Plant Biology, 2005, 48, 96-105.	0.9	77
48	Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Molecular Breeding, 2015, 35, 1.	1.0	74
49	Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. Genome, 2006, 49, 1564-1571.	0.9	73
50	FastPCR Software for PCR, In Silico PCR, and Oligonucleotide Assembly and Analysis. Methods in Molecular Biology, 2014, 1116, 271-302.	0.4	73
51	Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theoretical and Applied Genetics, 2009, 119, 1027-1038.	1.8	66
52	Variability, Recombination, and Mosaic Evolution of the Barley BARE-1 Retrotransposon. Journal of Molecular Evolution, 2005, 61, 275-291.	0.8	62
53	Swelling and Gelatinization of Cereal Starches. V. Ris \tilde{A}_{s} Mutants of Bomi and Carlsberg II Barley Cultivars. Journal of Cereal Science, 1993, 17, 1-9.	1.8	60
54	A major gene for grain cadmium accumulation in oat (<i>Avena sativa</i> L.). Genome, 2007, 50, 588-594.	0.9	60

#	Article	IF	CITATIONS
55	The Application of LTR Retrotransposons as Molecular Markers in Plants. Methods in Molecular Biology, 2012, 859, 115-153.	0.4	58
56	Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Molecular Biology, 2008, 66, 137-150.	2.0	56
57	Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells. Plant Journal, 1999, 20, 413-422.	2.8	55
58	Retrotransposon replication in plants. Current Opinion in Virology, 2013, 3, 604-614.	2.6	53
59	Transposon-Based Tagging: IRAP, REMAP, and iPBS. Methods in Molecular Biology, 2014, 1115, 233-255.	0.4	52
60	A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetic and Genome Research, 2005, 110, 598-605.	0.6	49
61	The repetitive landscape of the 5100 Mbp barley genome. Mobile DNA, 2017, 8, 22.	1.3	49
62	Life without GAG: The BARE-2 retrotransposon as a parasite's parasite. Gene, 2007, 390, 166-174.	1.0	48
63	Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (<i>Triticum) Tj ETQq1 1 0.7843 Pathology, 2012, 13, 276-287.</i>	14 rgBT /0 2.0	Overlock 10 45
64	Bare-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica, 1997, 100, 219-230.	0.5	44
65	Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica, 1999, 107, 53-63.	0.5	43
66	Reply: A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nature Reviews Genetics, 2009, 10, 276-276.	7.7	41
67	Integrating cereal genomics to support innovation in the Triticeae. Functional and Integrative Genomics, 2012, 12, 573-583.	1.4	39
68	Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biology, 2009, 9, 150.	1.6	38
69	Recent advances in faba bean genetic and genomic tools for crop improvement., 2021, 3, e75.		38
70	Structural analysis of starch from normal and shx (shrunken endosperm) barley (Hordeum vulgare) Tj ETQq0 0 0 rş	gBT/Overl	ogk 10 Tf 50
71	HEAT-INDUCED STRUCTURAL CHANGES OF SMALL AND LARGE BARLEY STARCH GRANULES. Journal of the Institute of Brewing, 1998, 104, 343-349.	0.8	36
72	Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theoretical and Applied Genetics, 2015, 128, 211-219.	1.8	35

#	Article	IF	Citations
7 3	Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, 2020, 281, 107851.	1.9	35
74	VC1 catalyses a key step in the biosynthesis of vicine in faba bean. Nature Plants, 2021, 7, 923-931.	4.7	34
7 5	The first doubled haploid linkage map for cultivated oat. Genome, 2008, 51, 560-569.	0.9	33
76	European Court of Justice delivers no justice to Europe on genomeâ€edited crops. Plant Biotechnology Journal, 2020, 18, 8-10.	4.1	31
77	Differential effects of mild chronic stress on cortisol and S-IgA responses to an acute stressor. Biological Psychology, 2012, 91, 307-311.	1.1	27
78	Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants. International Journal of Molecular Sciences, 2020, 21, 2931.	1.8	27
79	The genome sizes of <i>Hordeum </i> species show considerable variation. Genome, 1996, 39, 730-735.	0.9	26
80	The core domain of retrotransposon integrase in Hordeum: predicted structure and evolution. Molecular Biology and Evolution, 1998, 15, 1135-1144.	3.5	25
81	Template switching can create complex LTR retrotransposon insertions in Triticeae genomes. BMC Genomics, 2007, 8, 247.	1.2	25
82	Retrotransposon molecular markers resolve cocoyam (Xanthosoma sagittifolium) and taro (Colocasia esculenta) by type and variety. Euphytica, 2015, 206, 541-554.	0.6	25
83	BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Contemporary Issues in Genetics and Evolution, 1997, , 219-230.	0.9	25
84	BARE Retrotransposons Are Translated and Replicated via Distinct RNA Pools. PLoS ONE, 2013, 8, e72270.	1.1	25
85	Generation of SNP markers for short straw in oat (Avena sativa L.). Genome, 2006, 49, 282-287.	0.9	24
86	Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera. Molecular Breeding, 2002, 10, 51-62.	1.0	23
87	Retrotransposon-Based Genetic Diversity Assessment in Wild Emmer Wheat (Triticum turgidum ssp.) Tj ETQq1 1	0.784314	rgBT /Overl
88	Copia-Like Retrotransposons in the Rice Genome: Few and Assorted. Journal of Genome Science and Technology, 2002, 1, 35-47.	0.7	23
89	<i>BARE</i> retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. Plant Journal, 2008, 56, 40-50.	2.8	22
90	Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, 2016, , .	0.3	22

#	Article	IF	CITATIONS
91	The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. Theoretical and Applied Genetics, 2014, 127, 1223-1235.	1.8	21
92	Palindromic sequence-targeted (PST) PCR: a rapid and efficient method for high-throughput gene characterization and genome walking. Scientific Reports, 2019, 9, 17707.	1.6	21
93	A novel shrunken endosperm mutant of barley. Physiologia Plantarum, 1990, 78, 583-589.	2.6	18
94	Rapid linkage disequilibrium decay in the $Lr10$ gene in wild emmer wheat (Triticum dicoccoides) populations. Theoretical and Applied Genetics, 2011, 122, 175-187.	1.8	17
95	Microsatellite Diversity, Complexity, and Host Range of Mycobacteriophage Genomes of the Siphoviridae Family. Frontiers in Genetics, 2019, 10, 207.	1.1	17
96	Retrotransposon <i>><scp>BARE</scp></i> displays strong tissueâ€specific differences in expression. New Phytologist, 2013, 200, 1000-1008.	3.5	16
97	High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis. Molecular Biology Reports, 2020, 47, 1589-1603.	1.0	16
98	Metabolism of starch synthesis in developing grains of the shx shrunken mutant of barley (Hordeum) Tj ETQq0 C	0 rgBT /C)verlock 10 Tf
99	An analysis of soluble starch synthase isozymes from the developing grains of normal and shx cv. Bomi barley (Hordeum vulgare). Physiologia Plantarum, 1993, 89, 835-841.	2.6	14
100	The pseudogenes of barley. Plant Journal, 2018, 93, 502-514.	2.8	14
101	The Effect of the Shrunken Endosperm Mutation shx on Starch Granule Development in Barley Seeds. Journal of Cereal Science, 1994, 19, 49-55.	1.8	13
102	Gene Deletion in Barley Mediated by LTR-retrotransposon BARE. Scientific Reports, 2017, 7, 43766.	1.6	13
103	The effect of growth temperature on gelatinization properties of barley starch. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1998, 48, 85-90.	0.3	12
104	Integrase diversity and transcription of the maize retrotransposon Grande. Genome, 2006, 49, 558-562.	0.9	12
105	A doubled haploid rye linkage map with a QTL affecting \hat{l}_{\pm} -amylase activity. Journal of Applied Genetics, 2011, 52, 299-304.	1.0	12
106	Purification of Barley Starch by Protein Extraction. Starch/Staerke, 1991, 43, 387-389.	1.1	11
107	Immunochemical analysis of oat avenins in an oat cultivar and landrace collection. Journal of Cereal Science, 2020, 95, 103053.	1.8	11
108	Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display. Frontiers in Plant Science, 2021, 12, 691940.	1.7	11

#	Article	IF	CITATIONS
109	Hitching a Ride: Nonautonomous Retrotransposons and Parasitism as a Lifestyle. Topics in Current Genetics, 2012, , 71-88.	0.7	10
110	Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. Mobile DNA, 2014, 5, 24.	1.3	10
111	An analysis of soluble starch synthase isozymes from the developing grains of normal and shx cv. Bomi barley (Hordeum vulgare). Physiologia Plantarum, 1993, 89, 835-841.	2.6	9
112	Development of new marker methodsâ€"an example from oil palm. Plant Genetic Resources: Characterisation and Utilisation, 2003, 1, 103-113.	0.4	8
113	Detection of genetic relationships among spring and winter triticale (× Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech Journal of Genetics and Plant Breeding, 2013, 49, 171-174.	0.4	8
114	Characterisation of Dextrins Solubilised by \hat{l}_{\pm} -Amylase from Barley Starch Granules. Starch/Staerke, 2000, 52, 160-163.	1.1	6
115	Organization of Retrotransposons and Microsatellites in Cereal Genomes. , 2004, , 83-118.		6
116	Assessment of genetic diversity in Nordic timothy (Phleum pratense L.). Hereditas, 2016, 153, 5.	0.5	6
117	The Repetitive Landscape of the Barley Genome. Compendium of Plant Genomes, 2018, , 123-138.	0.3	6
118	Genomic regions associated with chocolate spot (Botrytis fabae Sard.) resistance in faba bean (Vicia) Tj ETQq0 C	0 rgBT /C	verlock 10 Tf
119	A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Reviews Genetics, 2008, 9, 414-414.	7.7	5
120	Copy-number variation of housekeeping gene rpl13a in rat strains selected for nervous system excitability. Molecular and Cellular Probes, 2017, 33, 11-15.	0.9	5
121	The impact of GM crops on agriculture. , 2020, , 195-213.		5
122	Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell, 1999, 11, 1769.	3.1	4
123	Genomics of Transposable Elements in the Triticeae. , 2009, , 387-405.		4
124	Transposon-Based Tagging In Silico Using FastPCR Software. Methods in Molecular Biology, 2021, 2250, 245-256.	0.4	4
125	Grain filling and starch synthesis in barley. Developments in Crop Science, 2000, 26, 147-167.	0.1	3
126	Retrotransposons: Metaparasites and Agents of Genome Evolution. Israel Journal of Ecology and Evolution, 2006, 52, 319-330.	0.2	3

#	Article	IF	CITATIONS
127	Genome Size and the Role of Transposable Elements. Plant Genetics and Genomics: Crops and Models, 2015, , 81-106.	0.3	3
128	Barley Mutagenesis. Progress in Botany Fortschritte Der Botanik, 2001, , 34-50.	0.1	3
129	Plant cells sell plants. Trends in Biotechnology, 1998, 16, 1-2.	4.9	O
130	Structure, functionality, and evolution of the BARE-1 retrotransposon of barley., 2000, , 53-63.		0