Sheng-Po Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371326/publications.pdf

Version: 2024-02-01

		159585	214800
195	2,967	30	47
papers	citations	h-index	g-index
195	195	195	3495
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improved performance of flexible citrus resistive memory device through air plasma. Flexible and Printed Electronics, 2022, 7, 015008.	2.7	O
2	Bright CsPbBr3 Perovskite Nanocrystals with Improved Stability by In-Situ Zn-Doping. Nanomaterials, 2022, 12, 759.	4.1	10
3	Silver-Doped Citrus Pectin Resistive Random Access Memory with Multilevel Characteristics. ECS Journal of Solid State Science and Technology, 2022, 11, 055003.	1.8	1
4	AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with Thermally Oxidized Al _{<i>x</i>} Ga _{2–<i>x</i>} O ₃ Sidewalls. ACS Omega, 2022, 7, 15027-15036.	3.5	4
5	High Stability Flexible Deep-UV Detector Based on All-Oxide Heteroepitaxial Junction. ACS Applied Electronic Materials, 2022, 4, 3099-3106.	4.3	9
6	The Characteristics of Aluminum-Gallium-Zinc-Oxide Ultraviolet Phototransistors by Co-Sputtering Method. Electronics (Switzerland), 2021, 10, 631.	3.1	2
7	Stability-Enhanced Resistive Random-Access Memory via Stacked In _{<i>x</i>} Ga _{1–<i>x</i>} O by the RF Sputtering Method. ACS Omega, 2021, 6, 10691-10697.	3.5	4
8	Investigating the Photodetectors and pH Sensors of Two-Dimensional MoS2 with Different Substrates. ECS Journal of Solid State Science and Technology, 2021, 10, 055015.	1.8	0
9	Investigation of MgIn2O4 MSM UV Photodetector With Different Oxygen Flow Ratios and Post-Annealing Temperatures. ECS Journal of Solid State Science and Technology, 2021, 10, 055014.	1.8	2
10	Switching Properties Improvement of Tungsten-Doped Indium Oxide Phototransistor. ECS Journal of Solid State Science and Technology, 2021, 10, 075007.	1.8	0
11	Development of Indium Titanium Zinc Oxide Thin Films Used as Sensing Layer in Gas Sensor Applications. Coatings, 2021, 11, 807.	2.6	5
12	Fabrication and Characterization of In0.9Ga0.1O EGFET pH Sensors. Coatings, 2021, 11, 929.	2.6	3
13	High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process. Coatings, 2021, 11, 1073.	2.6	1
14	Deep Ultraviolet AlGaN-Based Light-Emitting Diodes with p-AlGaN/AlGaN Superlattice Hole Injection Structures. Processes, 2021, 9, 1727.	2.8	3
15	Performance Improvement of Co-Sputtering AlGaZnO Solar-Blind Photodetectors. IEEE Sensors Journal, 2021, 21, 18682-18687.	4.7	2
16	Indium Aluminum Zinc Oxide Phototransistor With HfO2 Dielectric Layer Through Atomic Layer Deposition. IEEE Sensors Journal, 2020, 20, 1838-1842.	4.7	3
17	MgZnO/SiO ₂ /ZnO metal–semiconductor–metal dual-band UVA and UVB photodetector with different MgZnO thicknesses by RF magnetron sputter. Japanese Journal of Applied Physics, 2020, 59, SDDF04.	1.5	9
18	Photoresponses of Zinc Tin Oxide Thin-Film Transistor. Journal of Nanoscience and Nanotechnology, 2020, 20, 1704-1708.	0.9	7

#	Article	IF	CITATIONS
19	Voltage-Tunable UVC–UVB Dual-Band Metal–Semiconductor–Metal Photodetector Based on Ga2O3/MgZnO Heterostructure by RF Sputtering. Coatings, 2020, 10, 994.	2.6	6
20	Characteristics of MgIn2O4 Thin Film Transistors Enhanced by Introducing an MgO Buffer Layer. Coatings, 2020, 10, 1261.	2.6	0
21	Investigation of Conductive Mechanism of Amorphous IGO Resistive Random-Access Memory with Different Top Electrode Metal. Coatings, 2020, 10, 504.	2.6	4
22	An Amorphous (Al0.12Ga0.88)2O3 Deep Ultraviolet Photodetector. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	2
23	Polycrystalline In–Ga–O Thin-Film Transistors Coupled With a Nitrogen Doping Technique for High-Performance UV Detectors. IEEE Transactions on Electron Devices, 2020, 67, 140-145.	3.0	3
24	Ambient-Processed, Additive-Assisted CsPbBr3 Perovskite Light-Emitting Diodes with Colloidal NiOx Nanoparticles for Efficient Hole Transporting. Coatings, 2020, 10, 336.	2.6	10
25	AlGaN-based deep ultraviolet light emitting diodes with magnesium delta-doped AlGaN last barrier. Applied Physics Letters, 2020, 117, .	3.3	17
26	MgZnO MSM UV Photodetector with Different Annealing Temperatures by RF Magnetron Sputtering. ECS Journal of Solid State Science and Technology, 2020, 9, 055015.	1.8	1
27	Investigation of nitrogen doping effects on light-induced oxygen vacancy ionization and oxygen desorption in c-IGO TFTs. Materials Research Express, 2019, 6, 106445.	1.6	3
28	Ultraviolet/Visible Photodetectors Based on p–n NiO/ZnO Nanowires Decorated with Pd Nanoparticles. ACS Applied Nano Materials, 2019, 2, 6343-6351.	5.0	36
29	Effect of oxygen vacancy concentration on indium tungsten oxide UV-A photodetector. RSC Advances, 2019, 9, 87-90.	3.6	7
30	The Effect of Oxygen Partial Pressure and Annealing Process on the Characteristics of ZnGa ₂ O ₄ ÂMSM UV Photodetector. ECS Journal of Solid State Science and Technology, 2019, 8, Q3213-Q3216.	1.8	19
31	Integration of bandgap-engineered double-stacked channel layers with nitrogen doping for high-performance InGaO TFTs. Applied Physics Letters, 2019, 114, .	3.3	20
32	Indium Aluminum Zinc Oxide Thin Film Transistor With Al ₂ O ₃ Dielectric for UV Sensing. IEEE Photonics Technology Letters, 2019, 31, 1005-1008.	2.5	7
33	Indium Gallium Oxide Thin Film Transistor for Two-Stage UV Sensor Application. ECS Journal of Solid State Science and Technology, 2019, 8, Q3140-Q3143.	1.8	15
34	Stability Improvement of Nitrogen Doping on IGO TFTs under Positive Gate Bias Stress and Hysteresis Test. ECS Journal of Solid State Science and Technology, 2019, 8, Q3034-Q3040.	1.8	10
35	Solution-Processed UV and Visible Photodetectors Based on Y-Doped ZnO Nanowires with TiO ₂ Nanosheets and Au Nanoparticles. ACS Applied Energy Materials, 2018, 1, 2087-2095.	5.1	48
36	Bandgap Engineered Ultraviolet Photodetectors with Gallium-Zinc-Oxide via Co-Sputtering Method. ECS Journal of Solid State Science and Technology, 2018, 7, Q3083-Q3088.	1.8	6

3

#	Article	IF	CITATIONS
37	Amorphous Indium Titanium Zinc Oxide Thin Film Transistor and Impact of Gate Dielectrics on Its Photo-Electrical Properties. ECS Journal of Solid State Science and Technology, 2018, 7, Q3049-Q3053.	1.8	3
38	Photo-Electrical Properties of MgZnO Thin-Film Transistors With High- \${k}\$ Dielectrics. IEEE Photonics Technology Letters, 2018, 30, 59-62.	2.5	17
39	Influence of oxygen on the performance of indium titanium zinc oxide UV sensors fabricated via RF sputtering. Materials Science in Semiconductor Processing, 2018, 74, 297-302.	4.0	8
40	Photoresponses of Gallium Zinc Tin Oxide Thin-Film Transistors Fabricated by Cosputtering Method. , 2018, 2, 1-4.		1
41	Growth and Crystal Structure Investigation of InAs/GaSb Heterostructure Nanowires on Si Substrate. IEEE Nanotechnology Magazine, 2018, 17, 1151-1158.	2.0	4
42	Effect of Oxygen Vacancy Ratio on a GaZTO Solar-Blind Photodetector. Coatings, 2018, 8, 293.	2.6	14
43	Electrical Properties of Indium Aluminum Zinc Oxide Thin Film Transistors. Journal of Electronic Materials, 2018, 47, 6923-6928.	2.2	17
44	Highly Stable Ultrathin TiO ₂ Based Resistive Random Access Memory with Low Operation Voltage. ECS Journal of Solid State Science and Technology, 2018, 7, Q3183-Q3188.	1.8	24
45	Highly stable ITO/Zn2TiO4/Pt resistive random access memory and its application in two-bit-per-cell. RSC Advances, 2018, 8, 17622-17628.	3.6	12
46	Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors. Journal of Nanoscience and Nanotechnology, 2018, 18, 4930-4934.	0.9	3
47	Optical and photo-electrical properties of zinc tin oxide thin-film phototransistor. , 2018, , .		2
48	Effect of different partial pressure on Ga-doped ZnO UV photodetectors by RF sputtering., 2018,,.		0
49	Communication—Diffusion Break-Assisted Programming Mode for Active Electrically Programmable Fuse. ECS Journal of Solid State Science and Technology, 2018, 7, Q109-Q111.	1.8	3
50	Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure. Journal of Nanoscience and Nanotechnology, 2018, 18, 2493-2497.	0.9	3
51	Fabrication of Zinc Oxide-Based Thin-Film Transistors by Radio Frequency Sputtering for Ultraviolet Sensing Applications. Journal of Nanoscience and Nanotechnology, 2018, 18, 3518-3522.	0.9	5
52	Properties of Ga–Zn–O Ultraviolet Phototransistors Using Radio-Frequency Magnetron Co-Sputtering Method. Nanoscience and Nanotechnology Letters, 2018, 10, 396-402.	0.4	1
53	Suppression of electron overflow in 370-nm InGaN/AlGaN ultraviolet light emitting diodes with different insertion layer thicknesses. Journal of Crystal Growth, 2017, 468, 585-589.	1.5	1
54	Influence of Annealing Ambience on TiO ₂ Film Ultraviolet Photodetector. ECS Journal of Solid State Science and Technology, 2017, 6, Q3056-Q3060.	1.8	5

#	Article	IF	Citations
55	Transparent gas senor and photodetector based on Al doped ZnO nanowires synthesized on glass substrate. Ceramics International, 2017, 43, 5434-5440.	4.8	36
56	Tunable UV- and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14935-14944.	8.0	57
57	High Responsivity Indium-Zinc-Oxide Ultraviolet Thin-Film Phototransistor. Journal of Nanoscience and Nanotechnology, 2017, 17, 4864-4866.	0.9	3
58	Performance improvement of highly mismatched GaSb layers on GaAs by interfacial-treatment-assisted chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2017, 28, 845-855.	2.2	0
59	Optical Switch of a-IGZO TFT and Triple Junction Photovoltaic Cell. ECS Journal of Solid State Science and Technology, 2017, 6, Q120-Q122.	1.8	2
60	GaN-Based Blue Light-Emitting Diodes with an Electron Transmission Layer. ECS Journal of Solid State Science and Technology, 2017, 6, R154-R157.	1.8	4
61	Efficiency Enhancement in InGaN Photovoltaic Cells With Inverted Textured Surface. IEEE Photonics Technology Letters, 2017, 29, 1304-1307.	2.5	1
62	Suppressing efficiency droop using graded AlGaN/InGaN superlattice electron blocking layer for InGaN-based light-emitting diodes. Journal of Crystal Growth, 2017, 468, 562-566.	1.5	4
63	High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering. Materials, 2017, 10, 126.	2.9	23
64	Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering. Nanomaterials, 2017, 7, 156.	4.1	15
65	The Effect of the Thickness and Oxygen Ratio Control of Radio-Frequency Magnetron Sputtering on MgZnO Thin-Film Transistors. Journal of Nanoscience and Nanotechnology, 2017, 17, 2037-2040.	0.9	1
66	The Influence of Different Partial Pressure on the Fabrication of InGaO Ultraviolet Photodetectors. Sensors, 2016, 16, 2145.	3.8	14
67	Investigation of the effect of nitride-based LEDs fabricated using hole injection layer at different growth temperatures. Japanese Journal of Applied Physics, 2016, 55, 05FJ14.	1.5	0
68	Growth of ultrathin GaSb layer on GaAs using metal–organic chemical vapor deposition with Sb interfacial treatment. Applied Physics Express, 2016, 9, 095502.	2.4	5
69	Performance Enhancement of Blue InGaN Light-Emitting Diodes with P-GaN/InGaN SPS Last Barrier and P-AlGaN/GaN SPS EBL. ECS Journal of Solid State Science and Technology, 2016, 5, Q179-Q182.	1.8	4
70	Characterization of High Mg Content MgZnO Ultraviolet Photodetectors with Noise Properties. ECS Journal of Solid State Science and Technology, 2016, 5, Q191-Q194.	1.8	6
71	High Responsivity Mg $<$ sub $>$ $x < /$ sub $>$ $z = 2015$, 27, 978-981.	2.5	18
72	Scalability of Phase Change Materials in Nanostructure Template. International Journal of Photoenergy, 2015, 2015, 1-4.	2.5	0

#	Article	IF	Citations
73	New Energy Materials and Device Application. International Journal of Photoenergy, 2015, 2015, 1-1.	2.5	O
74	Photoelectrochemical characterization of n-type and p-type thin-film nanocrystalline Cu2ZnSnSe4 photocathodes. Journal of Environmental Chemical Engineering, 2015, 3, 297-303.	6.7	25
75	GaN MSM UV Photodetector With Sputtered AlN Nucleation Layer. IEEE Sensors Journal, 2015, 15, 4743-4748.	4.7	37
76	A Novel pH Sensor Using Extended-Gate Field-Effect Transistors with Ga ₂ O ₃ Nanowires Fabricated on SiO ₂ /Si Template. Science of Advanced Materials, 2015, 7, 475-478.	0.7	8
77	Concepts of Novel Nanomaterial Device and Application. Journal of Nanomaterials, 2014, 2014, 1-1.	2.7	0
78	Electrical Properties of Amorphous Zinc-Indium-Tin Oxide Semiconductor Thin-Film Transistors. Nanoscience and Nanotechnology Letters, 2014, 6, 273-278.	0.4	1
79	Beta-Gallium Oxide Nanowire Extended Gate Field Effect Transistor pH Sensors Prepared Using Furnace-Oxidized Gallium Nitride Thin Films. Nanoscience and Nanotechnology Letters, 2014, 6, 914-917.	0.4	8
80	Sensitivity of EGFET pH Sensors with TiO2 Nanowires. ECS Solid State Letters, 2014, 3, P123-P126.	1.4	35
81	Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents. Electronic Materials Letters, 2014, 10, 89-94.	2.2	8
82	Two-dimensional ZnO nanowalls for gas sensor and photoelectrochemical applications. Electronic Materials Letters, 2014, 10, 693-697.	2.2	14
83	See-Through Si Thin-Film Tandem Solar Cell Module With Hardener. IEEE Journal of Photovoltaics, 2014, 4, 1013-1017.	2.5	3
84	Performance Enhancement of High-Current-Injected Electrically Programmable Fuse With Compressive-Stress Nitride Layer. IEEE Electron Device Letters, 2014, 35, 297-299.	3.9	4
85	Amorphous InGaZnO Ultraviolet Phototransistors With a Thin Ga ₂ O ₃ Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 125-129.	2.9	14
86	Synthesis of CZTSe nanoink via a facile one-pot heating route based on polyetheramine chelation. Solar Energy Materials and Solar Cells, 2014, 128, 156-165.	6.2	18
87	The Cu Concentration Effect on the Electro-Optical Properties of Cu2ZnSnSe4 Thin Films Prepared by a Non-Vacuum Solution-Based Nano-Inks Process. Science of Advanced Materials, 2014, 6, 18-26.	0.7	0
88	Amorphous Indium–Zinc Oxide Semiconductor Thin-Film Transistors. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 388-391.	0.5	0
89	Noise Properties of ZnO Nanowalls Deposited Using Rapid Thermal Evaporation Technology. IEEE Photonics Technology Letters, 2013, 25, 213-216.	2.5	7
90	Triple-Junction GalnP/GaAs/Ge Solar Cells With an AZO Transparent Electrode and ZnO Nanowires. IEEE Journal of Photovoltaics, 2013, 3, 991-996.	2.5	12

#	Article	IF	Citations
91	Method for Improving the Stability of Gen 5 Silicon Thin-film Tandem Solar Cell. IEEE Journal of Photovoltaics, 2013, 3, 1140-1143.	2.5	1
92	Investigating the Effect of Piezoelectric Polarization on GaN-Based LEDs With Different Quantum Barrier Thickness. Journal of Display Technology, 2013, 9, 206-211.	1.2	14
93	Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine. Materials Letters, 2013, 98, 71-73.	2.6	10
94	Effect of surface modification by self-assembled monolayer on the ZnO film ultraviolet sensor. Applied Physics Letters, 2013, 103, 022101.	3.3	6
95	Fabrication and Photoelectrochemical Behavior of n-Type Cu2ZnSnSe4Thin-Film Electrodes Prepared via Non-Vacuum Nanoinks Process. ECS Journal of Solid State Science and Technology, 2013, 2, Q220-Q223.	1.8	8
96	Optoelectronic Properties of Thermally Evaporated ZnO Films with Nanowalls on Glass Substrates. Applied Physics Express, 2013, 6, 045201.	2.4	3
97	The inter-metallic oxide of ZnO/ITO/ZnO tri-layer films using a heat-induced diffusion mechanism. Applied Surface Science, 2013, 273, 598-602.	6.1	6
98	Efficiency of GaN/InGaN double-heterojunction photovoltaic cells under concentrated illumination. Surface and Coatings Technology, 2013, 231, 253-256.	4.8	10
99	Improved efficiency of p-type quasi-mono silicon blanket emitter solar cell by ion implantation and backside rounding. Materials Science-Poland, 2013, 31, 516-524.	1.0	0
100	Simple Fabrication Process for 2D ZnO Nanowalls and Their Potential Application as a Methane Sensor. Sensors, 2013, 13, 3941-3950.	3.8	52
101	p-Type Quasi-Mono Silicon Solar Cell Fabricated by Ion Implantation. International Journal of Photoenergy, 2013, 2013, 1-8.	2.5	3
102	Low Cost Amorphous Silicon Intrinsic Layer for Thin-Film Tandem Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-5.	2.5	0
103	Fabrication of Simple GaAs Solar Cell by Zn Diffusion Method. Advanced Materials Research, 2013, 684, 312-316.	0.3	3
104	Fabrication of ZnO Nanowall-Based Hydrogen Gas Nanosensor. Advanced Materials Research, 2013, 684, 21-25.	0.3	4
105	Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction. Applied Physics Letters, 2013, 102, .	3.3	6
106	Reducing the Current Crowding Effect on Nitride-Based Light-Emitting Diodes Using Modulated P-Extension Electrode Thickness. Japanese Journal of Applied Physics, 2013, 52, 01AG05.	1.5	2
107	Effect of Oxygen Partial Pressure on Electrical Characteristics of Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistors. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 361-365.	0.5	1
108	Growth of InN Nanorods on Glass Substrates by Molecular Beam Heteroepitaxy. Science of Advanced Materials, 2013, 5, 873-880.	0.7	2

#	Article	IF	Citations
109	Influence of Weight Ratio of Poly(4-vinylphenol) Insulator on Electronic Properties of InGaZnO Thin-Film Transistor. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	10
110	High-Efficiency Si Solar Cell Fabricated by Ion Implantation and Inline Backside Rounding Process. International Journal of Photoenergy, 2012, 2012, 1-7.	2.5	14
111	GaN Schottky Diode with TiW Electrodes on Silicon Substrate Based on AlN/AlGaN Buffer Layer. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	0
112	Zinc Oxide Nanoparticle Photodetector. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	17
113	Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors. Journal of Nanomaterials, 2012, 2012, 1-4.	2.7	2
114	Effect of Varied Undoped GaN Thickness on ESD and Optical Properties of GaN-Based LEDs. IEEE Photonics Technology Letters, 2012, 24, 800-802.	2.5	5
115	Characteristics of GaN/InGaN Double-Heterostructure Photovoltaic Cells. International Journal of Photoenergy, 2012, 2012, 1-5.	2.5	4
116	A Visible-Blind TiO2Nanowire Photodetector. Journal of the Electrochemical Society, 2012, 159, J132-J135.	2.9	41
117	InGaN-Based Light-Emitting Diodes With an AlGaN Staircase Electron Blocking Layer. IEEE Photonics Technology Letters, 2012, 24, 1737-1740.	2.5	6
118	Inserting a p-InGaN layer before the p-AlGaN electron blocking layer suppresses efficiency droop in InGaN-based light-emitting diodes. Applied Physics Letters, 2012, 101, 081120.	3.3	35
119	Characteristics of InGaN-Based Light-Emitting Diodes on Patterned Sapphire Substrates with Various Pattern Heights. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	9
120	High-performance amorphous indium–gallium–zinc oxide thin-film transistors with polymer gate dielectric. Thin Solid Films, 2012, 520, 5455-5458.	1.8	8
121	ZnO-Nanowire-Based Extended-Gate Field-Effect-Transistor pH Sensors Prepared on Glass Substrate. Science of Advanced Materials, 2012, 4, 1174-1178.	0.7	21
122	UV Illumination Room-Temperature ZnO Nanoparticle Ethanol Gas Sensors. ISRN Nanotechnology, 2012, 2012, 1-5.	1.3	18
123	Growth and Photoelectric Properties of Twinned ZnSe $\{m \{1-x\}\}$ Te $\{m x\}$ Nanotips. IEEE Nanotechnology Magazine, 2011, 10, 379-384.	2.0	2
124	ZnSe/ZnCdSeTe Superlattice Nanotips. IEEE Nanotechnology Magazine, 2011, 10, 682-687.	2.0	0
125	Improved Optical and ESD Characteristics for GaN-Based LEDs With an \frac{n}^{-} hbox $-\frac{1}{2}$ Layer. IEEE Transactions on Device and Materials Reliability, 2011, 11, 76-80.	2.0	5
126	Isopropyl Alcohol Sensors of CuO Nanotubes by Thermal Oxidation of Copper Films on Glass. IEEE Sensors Journal, 2011, 11, 3276-3282.	4.7	5

#	Article	IF	Citations
127	A Deep UV Sensitive \${m Ta}_{2}{m O}_{5}/{m a-IGZO}\$ TFT. IEEE Sensors Journal, 2011, 11, 2902-2905.	4.7	11
128	CuO-Nanowire Field Emitter Prepared on Glass Substrate. IEEE Nanotechnology Magazine, 2011, 10, 1161-1165.	2.0	16
129	A study on crystallization, optical and electrical properties of the advanced ZITO thin films using co-sputtering system. Journal of Alloys and Compounds, 2011, 509, 3667-3671.	5. 5	12
130	Effects of Oxygen Contents in the Active Channel Layer on Electrical Characteristics of IGZO-Based Thin Film Transistors. AIP Conference Proceedings, 2011, , .	0.4	0
131	High-Performance a-IGZO Thin-Film Transistor with Organic Polymer Dielectric Layer. , 2011, , .		3
132	Effect of oxygen partial pressure on electrical characteristics of amorphous indium gallium zinc oxide thin-film transistors fabricated by thermal annealing. Vacuum, 2011, 86, 246-249.	3. 5	15
133	Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 990-995.	2.9	45
134	A Novel Fabrication of p–n Diode Based on ZnO Nanowire/p-NiO Heterojunction. Japanese Journal of Applied Physics, 2011, 50, 01AJ05.	1.5	6
135	Hole transport improvement in $InGaN/GaN$ light-emitting diodes by graded-composition multiple quantum barriers. Applied Physics Letters, 2011, 99, .	3.3	123
136	Use of the Thermal Chemical Vapor Deposition to Fabricate Light-Emitting Diodes Based on ZnO Nanowire/p-GaN Heterojunction. Journal of Nanomaterials, 2011, 2011, 1-4.	2.7	2
137	Effect of Silicon Doped Quantum Barriers on Nitride-Based Light Emitting Diodes. Journal of the Electrochemical Society, 2011, 158, H836.	2.9	4
138	Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition electron blocking layer. , 2011 , , .		0
139	The comprehensive characteristics of quaternary AllnGaN with various TMI molar rate. Proceedings of SPIE, 2010, , .	0.8	0
140	Quaternary ZnCdSeTe Nanowires. Journal of Nanoscience and Nanotechnology, 2010, 10, 798-802.	0.9	2
141	ZnO Nanowire-Based UV Photodetector. Journal of Nanoscience and Nanotechnology, 2010, 10, 1135-1138.	0.9	5
142	Enhanced field emission of well-aligned ZnO nanowire arrays illuminated by UV. Chemical Physics Letters, 2010, 490, 176-179.	2.6	34
143	Growth of quaternary AllnGaN with various TMI molar rates. Journal of Crystal Growth, 2010, 312, 1920-1924.	1.5	14
144	An investigation of the microstructure, optical and electrical properties of ZITO thin film using the sol–gel method. Journal of Sol-Gel Science and Technology, 2010, 54, 347-354.	2.4	14

#	Article	IF	CITATIONS
145	A ZnO nanowire-based humidity sensor. Superlattices and Microstructures, 2010, 47, 772-778.	3.1	118
146	Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer. Applied Physics Letters, 2010, 97, .	3.3	34
147	Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells. Applied Physics Letters, 2010, 97, .	3.3	76
148	Laterally Grown n-ZnO Nanowire/p-GaN Heterojunction Light Emitting Diodes. Journal of the Electrochemical Society, 2010, 157, H866.	2.9	6
149	A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate. Journal of the Electrochemical Society, 2010, 157, K30.	2.9	61
150	Growth of ZnSe[sub $1\hat{a}^{*}x$]Te[sub x] Nanotips and the Fabrication of ZnSe[sub $1\hat{a}^{*}x$]Te[sub x] Nanotip-Based Photodetector. Journal of the Electrochemical Society, 2010, 157, K1.	2.9	10
151	Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer. Applied Physics Letters, 2010, 97, 261103.	3.3	190
152	A Solar-Blind \$eta\$-Ga\$_2\$O\$_3\$ Nanowire Photodetector. IEEE Photonics Technology Letters, 2010, 22, 709-711.	2.5	47
153	High-Performance a-IGZO Thin-Film Transistor Using $\theta = 1000$ hbox $\theta = 1000$ hbo	3.9	56
154	Fabrication of a White-Light-Emitting Diode by Doping Gallium into ZnO Nanowire on a p-GaN Substrate. Journal of Physical Chemistry C, 2010, 114, 12422-12426.	3.1	54
155	10-Gb/s Planar InGaAs P-I-N Photodetectors. IEEE Sensors Journal, 2010, 10, 1559-1563.	4.7	4
156	ZnO Nanowire-Based Oxygen Gas Sensor. IEEE Sensors Journal, 2009, 9, 485-489.	4.7	58
157	ZnSe Nanowire Photodetector Prepared on Oxidized Silicon Substrate by Molecular-Beam Epitaxy. Journal of the Electrochemical Society, 2009, 156, J73.	2.9	31
158	A lateral ZnO nanowire UV photodetector prepared on a ZnO:Ga/glass template. Semiconductor Science and Technology, 2009, 24, 075005.	2.0	23
159	Laterally-grown ZnO-nanowire photodetectors on glass substrate. Superlattices and Microstructures, 2009, 46, 797-802.	3.1	20
160	A Quaternary ZnCdSeTe Nanotip Photodetector. Nanoscale Research Letters, 2009, 4, 1540-6.	5.7	11
161	Surface HCl treatment in ZnO photoconductive sensors. Thin Solid Films, 2009, 517, 5050-5053.	1.8	25
162	MBE n-ZnO/MOCVD p-GaN heterojunction light-emitting diode. Thin Solid Films, 2009, 517, 5054-5056.	1.8	36

#	Article	IF	CITATIONS
163	MBE growth of ZnSe nanowires on oxidized silicon substrate. Superlattices and Microstructures, 2009, 46, 572-577.	3.1	12
164	Low-frequency noise characteristics of GaN-based UV photodiodes with AlN/GaN buffer layers prepared on Si substrates. Journal of Crystal Growth, 2009, 311, 3003-3006.	1.5	9
165	Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction. Chemical Physics Letters, 2009, 476, 69-72.	2.6	88
166	The synthesis and electrical characterization of Cu ₂ O/Al:ZnO radial p–n junction nanowire arrays. Nanotechnology, 2009, 20, 365603.	2.6	32
167	Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes. Applied Physics Letters, 2009, 95, .	3.3	99
168	Optical and Electrical Characteristics of ZnO Films Grown on Nitridated Si (1 0 0) Substrate with GaN and ZnO Double Buffer Layers. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1058-1063.	2.9	2
169	Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption. IEEE Nanotechnology Magazine, 2008, 7, 754-759.	2.0	95
170	ZnO epitaxial layers grown on nitridated Si(100) substrate with HT-GaN/LT-ZnO double buffer. Journal of Crystal Growth, 2008, 310, 290-294.	1.5	11
171	GaN photodetectors prepared on silicon and sapphire substrates. , 2008, , .		1
172	ZnO nanowire-based oxygen gas sensor. , 2008, , .		2
173	Preparation of ZnO Nanoflakes and a Nanowire-Based Photodetector by Localized Oxidation at Low Temperature. Journal of the Electrochemical Society, 2008, 155, K59.	2.9	15
174	GaN MESFET growth on vicinal sapphire by MOVPE., 2007,,.		0
175	Niâ^•Au contacts on homoepitaxial p-ZnSe with surface oxygen plasma treatments. Journal of Vacuum Science & Technology B, 2007, 25, 213.	1.3	0
176	Crabwise ZnO Nanowire UV Photodetector Prepared on ZnO : Ga/Glass Template. IEEE Nanotechnology Magazine, 2007, 6, 595-600.	2.0	13
177	The characteristics of transparent metal-ZnO contacts and ZnO-based photodiodes., 2007, 6474, 192.		1
178	Low-Frequency Noise Characteristics of Epitaxial ZnO Photoconductive Sensors. Journal of the Electrochemical Society, 2007, 154, J209.	2.9	7
179	Fabrication of Crack-Free Metal-Semiconductor-Metal Ultraviolet Photodetectors on Si (111) Substrates Based on Novel AlN/AlGaN Buffer Multilayer Scheme. ECS Transactions, 2007, 11, 117-128.	0.5	3
180	ZnSe based white light emitting diode on homoepitaxial ZnSe substrate. IET Optoelectronics, 2007, 1, 39-41.	3.3	9

#	Article	IF	CITATIONS
181	Noise Characteristics of ZnO-Nanowire Photodetectors Prepared on ZnO:Ga/Glass Templates. IEEE Sensors Journal, 2007, 7, 1020-1024.	4.7	18
182	Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates. Journal of Applied Physics, $2007, 102, .$	2.5	32
183	ZnO photoconductive sensors epitaxially grown on sapphire substrates. Sensors and Actuators A: Physical, 2007, 140, 60-64.	4.1	31
184	Room temperature photo-CVD SiO2layers on AlGaN and AlGaN/GaN MOS-HFETs. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 404-409.	1.8	5
185	Homoepitaxial ZnSe MIS photodetectors with SiO2 and BST insulator layers. Solid-State Electronics, 2006, 50, 750-753.	1.4	19
186	Photo-assisted thermally oxidized GaAs insulator layers deposited by photo-CVD. Surface and Coatings Technology, 2006, 200, 3250-3253.	4.8	6
187	Homoepitaxial ZnSe MSM photodetectors with various transparent electrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 164-168.	3.5	20
188	Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates. Applied Physics Letters, 2006, 89, 153101.	3.3	101
189	ITO/Homoepitaxial ZnSe/ITO MSM Sensors With Thermal Annealing. IEEE Sensors Journal, 2006, 6, 945-949.	4.7	3
190	AlGaN/GaN Schottky-barrier UV-B bandpass photodetectors with ITO contacts and LT-GaN cap layers. Semiconductor Science and Technology, 2006, 21, 1064-1068.	2.0	13
191	ZnSe MSM photodetectors prepared on GaAs and ZnSe substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 119, 202-205.	3.5	27
192	Room-Temperature ZnO Nanoparticle Ethanol Gas Sensors under UV Illumination. Advanced Materials Research, 0, 486, 39-43.	0.3	2
193	Effect of Oxygen Partial Pressure on Electrical Characteristics of Amorphous Zinc-Tin-Oxide Thin-Film Transistors. Applied Mechanics and Materials, 0, 590, 229-233.	0.2	O
194	Tri-Layer Structure ZnGa2O4-Based Resistive Random Access Memory. ECS Journal of Solid State Science and Technology, 0, , .	1.8	2
195	Enhanced Ga2O3-Based RRAM via Stacked Bilayer ZnO/Ga2O3., 0,,.		1