Vladislav Khayrudinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371115/publications.pdf

Version: 2024-02-01

1307594 26 197 7 citations h-index papers

g-index 26 26 26 301 docs citations times ranked citing authors all docs

1125743

13

#	Article	IF	Citations
1	Enhanced terahertz emission from mushroom-shaped InAs nanowire network induced by linear and nonlinear optical effects. Nanotechnology, 2022, 33, 085207.	2.6	4
2	Femtosecond Mode-Locked Yb:KYW Laser Based on InP Nanowire Saturable Absorber. IEEE Photonics Technology Letters, 2022, 34, 247-250.	2.5	5
3	InSb Nanowire Direct Growth on Plastic for Monolithic Flexible Device Fabrication. ACS Applied Electronic Materials, 2022, 4, 539-545.	4.3	1
4	Direct GaAs Nanowire Growth and Monolithic Lightâ€Emitting Diode Fabrication on Flexible Plastic Substrates. Advanced Photonics Research, 2022, 3, .	3.6	4
5	Engineering the Dipole Orientation and Symmetry Breaking with Mixedâ€Dimensional Heterostructures. Advanced Science, 2022, 9, e2200082.	11.2	8
6	Inducing Strong Light–Matter Coupling and Optical Anisotropy in Monolayer MoS ₂ with High Refractive Index Nanowire. ACS Applied Materials & Therefaces, 2022, 14, 31140-31147.	8.0	4
7	Effect of crystal structure on the Young's modulus of GaP nanowires. Nanotechnology, 2021, 32, 385706.	2.6	4
8	Ultrafast carrier dynamics and nonlinear optical response of InAsP nanowires. Photonics Research, 2021, 9, 1811.	7.0	5
9	Hybrid GaAs nanowire-polymer device on glass: Al-doped ZnO (AZO) as transparent conductive oxide for nanowire based photovoltaic applications. Journal of Crystal Growth, 2020, 548, 125840.	1.5	4
10	Direct Growth of Light-Emitting III–V Nanowires on Flexible Plastic Substrates. ACS Nano, 2020, 14, 7484-7491.	14.6	24
11	Management of light and scattering in InP NWs by dielectric polymer shell. Nanotechnology, 2020, 31, 384003.	2.6	3
12	Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber. Photonics Research, 2020, 8, 1035.	7.0	10
13	Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions. Photonics Research, 2020, 8, 1734.	7.0	1
14	InAs-Nanowire-Based Broadband Ultrafast Optical Switch. Journal of Physical Chemistry Letters, 2019, 10, 4429-4436.	4.6	18
15	Growth of GaAs nanowire–graphite nanoplatelet hybrid structures. CrystEngComm, 2019, 21, 6165-6172.	2.6	5
16	Site-specific growth of oriented ZnO nanocrystal arrays. Beilstein Journal of Nanotechnology, 2019, 10, 274-280.	2.8	2
17	Analysis of doping distribution in horizontal GaAs nanowires with axial p-n junction by the conductive atomic force microscopy. Journal of Physics: Conference Series, 2019, 1410, 012228.	0.4	O
18	Thermal conductivity suppression in GaAs–AlAs core–shell nanowire arrays. Nanoscale, 2019, 11, 20507-20513.	5.6	9

#	Article	IF	CITATIONS
19	Title is missing!. Chinese Optics Letters, 2019, 17, 062301.	2.9	2
20	Surface potential response from GaP nanowires synthesized with mixed crystal phases. Journal of Physics: Conference Series, 2019, 1400, 044018.	0.4	0
21	III–V nanowires on black silicon and low-temperature growth of self-catalyzed rectangular InAs NWs. Scientific Reports, 2018, 8, 6410.	3.3	11
22	Nanowire network–based multifunctional all-optical logic gates. Science Advances, 2018, 4, eaar7954.	10.3	51
23	Lowâ€Power Continuousâ€Wave Second Harmonic Generation in Semiconductor Nanowires. Laser and Photonics Reviews, 2018, 12, 1800126.	8.7	6
24	Measurement of Nanowire Optical Modes Using Cross-Polarization Microscopy. Scientific Reports, 2017, 7, 17790.	3.3	6
25	Synthesis and properties of ultra-long InP nanowires on glass. Nanotechnology, 2016, 27, 505606.	2.6	7
26	Thermoelectric Characteristics of InAs Nanowire Networks Directly Grown on Flexible Plastic Substrates. ACS Applied Energy Materials, 0, , .	5.1	3