Paul C. Driscoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4370675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhythmic glucose metabolism regulates the redox circadian clockwork in human red blood cells. Nature Communications, 2021, 12, 377.	12.8	49
2	The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nature Communications, 2021, 12, 6176.	12.8	19
3	Identifying strategies to target the metabolic flexibility of tumours. Nature Metabolism, 2020, 2, 335-350.	11.9	86
4	An Improved Method for Measuring Absolute Metabolite Concentrations in Small Biofluid or Tissue Samples. Journal of Proteome Research, 2019, 18, 1503-1512.	3.7	6
5	Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nature Communications, 2017, 8, 1384.	12.8	63
6	Mechanism of Action of Secreted Newt Anterior Gradient Protein. PLoS ONE, 2016, 11, e0154176.	2.5	25
7	Flexible Stoichiometry and Asymmetry of the PIDDosome Core Complex by Heteronuclear NMR Spectroscopy and Mass Spectrometry. Journal of Molecular Biology, 2015, 427, 737-752.	4.2	14
8	Exposed: The Many and Varied Roles of Phospholipase C Î ³ SH2 Domains. Journal of Molecular Biology, 2015, 427, 2731-2733.	4.2	3
9	Structural Studies of Death Receptors. Methods in Enzymology, 2014, 545, 201-242.	1.0	5
10	Structural and Functional Characterization of the Recombinant Death Domain from Death-Associated Protein Kinase. PLoS ONE, 2013, 8, e70095.	2.5	8
11	Structural Homology between the C-Terminal Domain of the PapC Usher and Its Plug. Journal of Bacteriology, 2010, 192, 1824-1831.	2.2	25
12	Structural insights into the catalytic mechanism of Trypanosoma cruzi GPXI (glutathione) Tj ETQq0 0 0 rgBT /Ove	erlgck 10 T	f 50 302 Td
13	Small Molecule Inhibitors of the Neuropilin-1 Vascular Endothelial Growth Factor A (VEGF-A) Interaction. Journal of Medicinal Chemistry, 2010, 53, 2215-2226.	6.4	168

14	Characterization of Phospholipase Cl ³ Enzymes with Gain-of-Function Mutations. Journal of Biological Chemistry, 2009, 284, 23083-23093.	3.4	58
15	Solution Structure and Phylogenetics of Prod1, a Member of the Three-Finger Protein Superfamily Implicated in Salamander Limb Regeneration. PLoS ONE, 2009, 4, e7123.	2.5	62
16	Crystal structures of PI3K-C2α PX domain indicate conformational change associated with ligand binding. BMC Structural Biology, 2008, 8, 13.	2.3	9
17	Three-dimensional Solution Structure and Conformational Plasticity of the N-terminal Scavenger Receptor Cysteine-rich Domain of Human CD5. Journal of Molecular Biology, 2008, 378, 129-144.	4.2	16
18	Solution Structure of the Inner DysF Domain of Myoferlin and Implications for Limb Girdle Muscular Dystrophy Type 2B. Journal of Molecular Biology, 2008, 379, 981-990.	4.2	36

#	Article	IF	CITATIONS
19	Rac Regulates Its Effector Phospholipase Cγ2 through Interaction with a Split Pleckstrin Homology Domain. Journal of Biological Chemistry, 2008, 283, 30351-30362.	3.4	56
20	Clustering of Genetically Defined Allele Classes in the <i>Caenorhabditis elegans</i> DAF-2 Insulin/IGF-1 Receptor. Genetics, 2008, 178, 931-946.	2.9	76
21	NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1673-1678.	7.1	48
22	RILM: a web-based resource to aid comparative and functional analysis of the insulin and IGF-1 receptor family. Human Mutation, 2007, 28, 660-668.	2.5	13
23	Biophysical and cell-based evidence for differential interactions between the death domains of CD95/Fas and FADD. Cell Death and Differentiation, 2007, 14, 1717-1719.	11.2	10
24	DNA fragmentation-based combinatorial approaches to soluble protein expression. Drug Discovery Today, 2007, 12, 931-938.	6.4	20
25	DNA fragmentation based combinatorial approaches to soluble protein expression. Drug Discovery Today, 2007, 12, 939-947.	6.4	11
26	Backbone 1H, 13C, and 15N resonance assignments for the 26-kD human de-ubiquitinating enzyme UCH-L3. Biomolecular NMR Assignments, 2007, 1, 51-53.	0.8	4
27	Structural and Mechanistic Insights into Ras Association Domains of Phospholipase C Epsilon. Molecular Cell, 2006, 21, 495-507.	9.7	129
28	Combinatorial Domain Hunting: An effective approach for the identification of soluble protein domains adaptable to high-throughput applications. Protein Science, 2006, 15, 2356-2365.	7.6	34
29	Resonance Assignments of the Complex between TraN and the C-terminal Domain of TraO from the Conjugative Plasmid pKM101. Journal of Biomolecular NMR, 2006, 36, 31-31.	2.8	0
30	Characterization of a Bicyclic Peptide Neuropilin-1 (NP-1) Antagonist (EG3287) Reveals Importance of Vascular Endothelial Growth Factor Exon 8 for NP-1 Binding and Role of NP-1 in KDR Signaling. Journal of Biological Chemistry, 2006, 281, 13493-13502.	3.4	118
31	Backbone 1H, 13C, and 15N Resonance Assignments for the two 13ÅkD Ras Associating Domains (RA1 and) Tj I	ETQq1 1 0. 2.8	.784314 rg3⊺
32	The OtsAB Pathway Is Essential for Trehalose Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 14524-14529.	3.4	143
33	Letter to the Editor: Backbone1H,13C, and15N Resonance Assignments for a 29ÂkD Monomeric Variant of Pseudomonas Aeruginosa Dimethylarginine Dimethylaminohydrolase. Journal of Biomolecular NMR, 2004, 29, 463-464.	2.8	1
34	Letter to the Editor: 1H, 15N, and 13C chemical shift assignments of the resuscitation promoting factor domain of Rv1009 from Mycobacterium tuberculosis. Journal of Biomolecular NMR, 2004, 30, 373-374.	2.8	12
35	The 3D Solution Structure of the C-terminal Region of Ku86 (Ku86CTR). Journal of Molecular Biology, 2004, 335, 573-582.	4.2	55
36	Characterization and Manipulation of the Pseudomonas aeruginosa Dimethylarginine Dimethylaminohydrolase Monomer–Dimer Equilibrium. Journal of Molecular Biology, 2004, 341, 171-184.	4.2	14

#	Article	IF	CITATIONS
37	Synthesis of a Cyclic Peptide Containing Norlanthionine:Â Effect of the Thioether Bridge on Peptide Conformation. Journal of Organic Chemistry, 2003, 68, 8193-8198.	3.2	18
38	Synthesis of Orthogonally Protected Lanthionines. Journal of Organic Chemistry, 2003, 68, 8185-8192.	3.2	31
39	The X-ray Crystal Structure and Putative Ligand-derived Peptide Binding Properties of γ-Aminobutyric Acid Receptor Type A Receptor-associated Protein. Journal of Biological Chemistry, 2002, 277, 5556-5561.	3.4	67
40	The pH Dependence of CD2 Domain 1 Self-Association and15N Chemical Exchange Broadening Is Correlated with the Anomalous pKaof Glu41â€. Biochemistry, 2002, 41, 14680-14688.	2.5	7
41	The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Letters, 2002, 513, 77-84.	2.8	181
42	H-NS Oligomerization Domain Structure Reveals the Mechanism for High Order Self-association of the Intact Protein. Journal of Molecular Biology, 2002, 324, 841-850.	4.2	123
43	Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Trends in Biochemical Sciences, 2002, 27, 426-432.	7.5	85
44	Synthesis of cyclic peptides containing nor-lanthionine bridges via a triply-orthogonal protecting group strategy. Tetrahedron Letters, 2002, 43, 8363-8366.	1.4	9
45	Backbone 1H, 13C, and 15N resonance assignments for the C-terminal region of Ku86 (Ku86CTR). Journal of Biomolecular NMR, 2002, 22, 373-374.	2.8	1
46	Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS. Journal of Molecular Biology, 2001, 306, 1127-1137.	4.2	37
47	Synthesis and Function of 3-Phosphorylated Inositol Lipids. Annual Review of Biochemistry, 2001, 70, 535-602.	11.1	1,457
48	Backbone 1H, 13C, and 15N resonance assignments for a 14 kD protein, GABA(A) receptor associated protein (GABARAP). Journal of Biomolecular NMR, 2001, 21, 185-186.	2.8	6
49	Solution structure and backbone dynamics of the DNA-binding domain of mouse Sox-5. Protein Science, 2001, 10, 83-98.	7.6	18
50	Solving the FYVE domainPtdIns(3)P puzzle. , 2001, 8, 287-290.		12
51	Oligomerization of the chromatin-structuring protein H-NS. Molecular Microbiology, 2000, 36, 962-972.	2.5	112
52	Backbone dynamics of the C-terminal SH2 domain of the p85α subunit of phosphoinositide 3-kinase: effect of phosphotyrosine-peptide binding and characterization of slow conformational exchange processes 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2000, 299, 771-788.	4.2	31
53	The three-dimensional solution structure and dynamic properties of the human FADD death domain 1 1Edited by A. Fersht. Journal of Molecular Biology, 2000, 302, 171-188.	4.2	89
54	Determination of pKaValues of Carboxyl Groups in the N-Terminal Domain of Rat CD2:Â Anomalous pKaof a Glutamate on the Ligand-Binding Surfaceâ€. Biochemistry, 2000, 39, 6814-6824.	2.5	33

#	Article	IF	CITATIONS
55	Structural and Biochemical Evaluation of the Interaction of the Phosphatidylinositol 3-Kinase p85α Src Homology 2 Domains with Phosphoinositides and Inositol Polyphosphates. Journal of Biological Chemistry, 1999, 274, 15678-15685.	3.4	18
56	Intermolecular Interactions of the p85α Regulatory Subunit of Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1999, 274, 12323-12332.	3.4	47
57	NMR exchange broadening arising from specific low affinity protein self-association: analysis of nitrogen-15 nuclear relaxation for rat CD2 domain 1. Journal of Biomolecular NMR, 1999, 14, 307-320.	2.8	42
58	Endocytosis: How dynamin sets vesicles PHree!. Current Biology, 1999, 9, R301-R304.	3.9	18
59	Cross-restriction of a T cell clone to HLA-DR alleles associated with rheumatoid arthritis: Clues to arthritogenic peptide motifs. Arthritis and Rheumatism, 1999, 42, 1040-1050.	6.7	13
60	Crystal structure of the C-terminal SH2 domain of the p85α regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate. Journal of Molecular Biology, 1999, 292, 763-770.	4.2	31
61	Sequence specific 1H, 13C and 15N resonance assignment of rat CD2 domain 1. Journal of Biomolecular NMR, 1998, 12, 457-458.	2.8	5
62	Structural analysis of the CD5 antigen. Expression, disulphide bond analysis and physical characterisation of CD5 scavenger receptor superfamily domain 1. FEBS Journal, 1998, 257, 131-141.	0.2	25
63	Solution structure of the C-terminal SH2 domain of the p85α regulatory subunit of phosphoinositide 3-kinase 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 276, 461-478.	4.2	50
64	The energetics of HMG box interactions with DNA. Thermodynamic description of the box from mouse Sox-5 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 281, 705-717.	4.2	47
65	GAGA over the nucleosome. Nature Structural Biology, 1997, 4, 87-89.	9.7	3
66	NMR Analysis of Interacting Soluble Forms of the Cellâ^'Cell Recognition Molecules CD2 and CD48. Biochemistry, 1996, 35, 5982-5991.	2.5	53
67	The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator. Structure, 1995, 3, 823-833.	3.3	37
68	The Solution Structure of the F42A Mutant of Human Interleukin 2. Journal of Molecular Biology, 1995, 247, 979-994.	4.2	47
69	NMR and crystallography — complementary approaches to structure determination. Trends in Biotechnology, 1994, 12, 149-153.	9.3	35
70	Three-dimensional solution structure of the pleckstrin homology domain from dynamin. Current Biology, 1994, 4, 884-891.	3.9	101
71	Expression and Characterization of a Very-Late Antigen-4 (alpha4beta1) Integrin-Binding Fragment of Vascular Cell-Adhesion Molecule-1. FEBS Journal, 1994, 226, 517-523.	0.2	1
72	Crystallization and Preliminary X-ray Diffraction Characterisation of Both a Native and Selenomethionyl VLA-4 Binding Fragment of VCAM-1. Journal of Molecular Biology, 1994, 244, 464-468.	4.2	9

#	Article	IF	CITATIONS
73	Application of Maximum Entropy Methods to Three-Dimensional NMR Spectroscopy. Journal of Magnetic Resonance Series B, 1993, 101, 218-222.	1.6	10
74	Solution structure and ligand-binding site of the SH3 domain of the p851± subunit of phosphatidylinositol 3-kinase. Cell, 1993, 73, 813-822.	28.9	209
75	Proton NMR assignment and secondary structure of the cell adhesion type III module of fibronectin. Biochemistry, 1992, 31, 2068-2073.	2.5	100
76	Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance. Journal of Molecular Biology, 1992, 225, 821-833.	4.2	52
77	Human epidermal growth factor. Journal of Molecular Biology, 1992, 227, 271-282.	4.2	129
78	Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature, 1991, 353, 762-765.	27.8	161
79	Practical aspects of proton-carbon-carbon-proton three-dimensional correlation spectroscopy of 13C-labeled proteins. Journal of Magnetic Resonance, 1990, 87, 620-627.	0.5	58
80	Low resolution structure of interleukin-1β in solution derived from 1Hî—,15N heteronuclear three-dimensional nuclear magnetic resonance spectroscopy. Journal of Molecular Biology, 1990, 214, 811-817.	4.2	25
81	The influence of stereospecific assignments on the determination of three-dimensional structures of proteins by nuclear magnetic resonance spectroscopy. FEBS Letters, 1989, 243, 223-233.	2.8	55
82	Low-temperature study of the plastocyanin–ferricyanide electron-transfer reaction in aqueous methanol reveals an unusual energy barrier. Journal of the Chemical Society Chemical Communications, 1988, , 234-235.	2.0	2
83	1H NMR studies of Cr(NH3)63+ binding to spinach plastocyanin. Journal of Inorganic Biochemistry, 1986, 28, 171-180.	3.5	14
84	Catalysis of plastocyanin electron self-exchange by redox-inert multivalent cations. FEBS Letters, 1985, 190, 242-248.	2.8	35
85	Primordial Krebs-cycle-like non-enzymatic reactions detected by mass spectrometry and nuclear magnetic resonance. Wellcome Open Research, 0, 2, 52.	1.8	3
86	1H-NMR as implemented in several origin of life studies artificially implies the absence of metabolism-like non-enzymatic reactions by being signal-suppressed. Wellcome Open Research, 0, 2, 52.	1.8	6