Alain Ulazia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4370495/publications.pdf

Version: 2024-02-01

361413 477307 52 897 20 29 citations h-index g-index papers 52 52 52 747 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Optimal strategies of deployment of far offshore co-located wind-wave energy farms. Energy Conversion and Management, 2022, 251, 114914.	9.2	24
2	Long-Term Freezing Temperatures Frequency Change Effect on Wind Energy Gain (Eurasia and North) Tj ETQqC	0 0 0 ₃ . <u>g</u> BT /	Overlock 10 Tf
3	The power flow and the wave energy flux at an operational wave farm: Findings from Mutriku, Bay of Biscay. Ocean Engineering, 2021, 227, 108654.	4.3	9
4	Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010). Energy, 2021, 226, 120364.	8.8	27
5	Extension and improvement of synchronous linear generator based point absorber operation in high wave excitation scenarios. Ocean Engineering, 2021, 239, 109844.	4.3	8
6	Helmholtz's Vortex Motion: An Embodied View of Mathematics in the Heuristics of Fluid Mechanics. Topoi, 2020, 39, 949-961.	1.3	0
7	Impact of long-term resource variations on wave energy Farms: The Icelandic case. Energy, 2020, 192, 116609.	8.8	17
8	Performance enhancement of the artificial neural network–based reinforcement learning for wind turbine yaw control. Wind Energy, 2020, 23, 676-690.	4.2	40
9	Calibration of Reanalysis Data against Wind Measurements for Energy Production Estimation of Building Integrated Savonius-Type Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 9017.	2.5	4
10	Problem-Based Learning in University Studies on Renewable Energies: Case of a Laboratory Windpump. Sustainability, 2020, 12, 2495.	3.2	9
11	Sensitivity Studies for a Hybrid Numerical–Statistical Short-Term Wind and Gust Forecast at Three Locations in the Basque Country (Spain). Atmosphere, 2020, 11, 45.	2.3	2
12	On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters. Energy, 2020, 206, 118146.	8.8	24
13	The Sailor diagram – A new diagram for the verification of two-dimensional vector data from multiple models. Geoscientific Model Development, 2020, 13, 3221-3240.	3.6	3
14	Global estimations of wind energy potential considering seasonal air density changes. Energy, 2019, 187, 115938.	8.8	80
15	Reduction of the capture width of wave energy converters due to long-term seasonal wave energy trends. Renewable and Sustainable Energy Reviews, 2019, 113, 109267.	16.4	24
16	The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential. Energies, 2019, 12, 2635.	3.1	25
17	Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula. Sustainability, 2019, 11, 3648.	3.2	25
18	Evaluation of Lebanon's Offshore-Wind-Energy Potential. Journal of Marine Science and Engineering, 2019, 7, 361.	2.6	8

#	Article	IF	Citations
19	Calculation of Lebanon offshore wind energy potential using ERA5 reanalysis: impact of seasonal air density changes. , 2019, , .		1
20	Combining random forests and physics-based models to forecast the electricity generated by ocean waves: A case study of the Mutriku wave farm. Ocean Engineering, 2019, 189, 106314.	4.3	28
21	A Context-Aware Oil Debris-Based Health Indicator for Wind Turbine Gearbox Condition Monitoring. Energies, 2019, 12, 3373.	3.1	21
22	An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines. Energies, 2019, 12, 2027.	3.1	3
23	Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gurney Flap Flow Control. Sustainability, 2019, 11, 2809.	3.2	25
24	Analysis of Wells-type turbines' operational parameters during winter of 2014 at Mutriku wave farm. , 2019, , .		0
25	MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms. Energies, 2019, 12, 28.	3.1	23
26	ROSEO: Novel Savonious-type BIWT Design based on the Concentration of Horizontal and Vertical Circulation of Wind on the Edge of Buildings. , 2019, , .		0
27	Electricity production, capacity factor, and plant efficiency index at the Mutriku wave farm (2014–2016). Ocean Engineering, 2018, 147, 20-29.	4.3	87
28	Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms. Energies, 2018, 11, 3357.	3.1	21
29	Seasonal Air Density Variations over The East of Scotland and The Consequences for Offshore Wind Energy., 2018,,.		4
30	Novel Method for the Identification of Defective Anemometers in Wind Farms. , 2018, , .		0
31	Historical Evolution of the Wave Resource and Energy Production off the Chilean Coast over the 20th Century. Energies, 2018, 11, 2289.	3.1	31
32	Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters' power absorption. Applied Energy, 2018, 224, 205-219.	10.1	50
33	Activation of the Eddy Mental Schema, Multiple Analogies and Their Heuristic Cooperation in the Historical Development of Fluid Dynamics. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2018, , 145-166.	0.3	0
34	USE OF QGIS OPEN SOFTWARE TO DEFINE THE LOCAL RENEWABLE ENERGY RESOURCES. A PROJECT BASED LEARNING EXPERIENCE. INTED Proceedings, 2018, , .	0.0	0
35	Wave energy trends over the Bay of Biscay and the consequences for wave energy converters. Energy, 2017, 141, 624-634.	8.8	54
36	Using 3DVAR data assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean. Applied Energy, 2017, 208, 1232-1245.	10.1	33

#	Article	IF	Citations
37	Novel on-field method for pitch error correction in wind turbines. Energy Procedia, 2017, 142, 9-16.	1.8	6
38	USING OPEN SOFTWARE TO TEACH RESOURCE ASSESSMENT OF RENEWABLE ENERGIES. EDULEARN Proceedings, 2017, , .	0.0	0
39	Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for estimating offshore wind energy potential. A case study of the Iberian northern coastline. Applied Energy, 2016, 180, 617-627.	10.1	37
40	Wave Energy Forecasting at Three Coastal Buoys in the Bay of Biscay. IEEE Journal of Oceanic Engineering, 2016, 41, 923-929.	3.8	9
41	Multiple Roles for Analogies in the Genesis of Fluid Mechanics: How Analogies Can Cooperate with Other Heuristic Strategies. Foundations of Science, 2016, 21, 543-565.	0.7	14
42	The cognitive nexus between Bohr's analogy for the atom and Pauli's exclusion schema. Endeavour, 2016, 40, 56-64.	0.4	3
43	TEACHING MARINE ENERGY WITH R. , 2016, , .		0
44	TEACHING RENEWABLE ENERGIES USING FREE SOFTWARE: A CASE STUDY WITH R APPLIED TO OCEAN ENERGY. EDULEARN Proceedings, 2016, , .	0.0	1
45	Short-term forecasting of zonal and meridional wave energy flux in the Bay of Biscay using random forests. , 2015, , .		1
46	Short-term forecasting of the wave energy flux: Analogues, random forests, and physics-based models. Ocean Engineering, 2015, 104, 530-539.	4.3	97
47	The provocative analogy as pedagogical strategy: the historical case of fluid mechanics. Ensenanza De Las Ciencias, 2015, 33, 159.	0.3	0
48	Influence of local air flow regimes on the ozone content of two Pyrenean valleys. Atmospheric Environment, 2013, 74, 367-377.	4.1	13
49	Energetikaren historia, oinarriak eta ondorioak zibilizazioentzat. Gogoa (journal), 0, 14, 263-279.	0.0	0
50	Study of ocean and wind energy potential with R: an innovative experience in the classroom. , 0, , .		1
51	Using open software to teach resource assessment of renewable energies. , 0, , .		0
52	Using open software to teach resource assessment of solar thermal and geothermal energy. , 0, , .		1