
Virginia H Dale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4370225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Framework for assessing landâ€management effects on atâ€risk species: Example of SE USA wood pellet production and gopher tortoise (Gopherus polyphemus). Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e385.	1.9	2
2	An indicator-based approach to sustainable management of natural resources. , 2021, , 255-280.		0
3	Food–Energy–Water Crises in the United States and China: Commonalities and Asynchronous Experiences Support Integration of Global Efforts. Environmental Science & Technology, 2021, 55, 1446-1455.	4.6	13
4	Effects of Production of Woody Pellets in the Southeastern United States on the Sustainable Development Goals. Sustainability, 2021, 13, 821.	1.6	18
5	Thinking Big and Thinking Small: A Conceptual Framework for Best Practices in Community and Stakeholder Engagement in Food, Energy, and Water Systems. Sustainability, 2021, 13, 2160.	1.6	31
6	Resolution of Respect: Jerry S. Olson (1928–2021). Bulletin of the Ecological Society of America, 2021, 102, e01879.	0.2	0
7	Resilience Lessons From the Southeast United States Woody Pellet Supply Chain Response to the COVID-19 Pandemicâ€. Frontiers in Forests and Global Change, 2021, 4, .	1.0	6
8	Multifunctional perennial production systems for bioenergy: performance and progress. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e375.	1.9	26
9	Towards more sustainable agricultural landscapes: Lessons from Northwestern Mexico and the Western Highlands of Guatemala. Futures, 2020, 124, 102647.	1.4	5
10	Rapid appraisal using landscape sustainability indicators for Yaqui Valley, Mexico. Environmental and Sustainability Indicators, 2020, 6, 100029.	1.7	9
11	Enhance indigenous agricultural systems to reduce migration. Nature Sustainability, 2020, 3, 74-76.	11.5	12
12	Opportunities and attitudes of private forest landowners in supplying woody biomass for renewable energy. Renewable and Sustainable Energy Reviews, 2019, 113, 109205.	8.2	40
13	Engaging stakeholders to assess landscape sustainability. Landscape Ecology, 2019, 34, 1199-1218.	1.9	41
14	Dataset of forest landowner survey to assess interest in supplying woody biomass in two Southeastern United States fuelsheds. Data in Brief, 2019, 27, 104674.	0.5	3
15	State of apps targeting management for sustainability of agricultural landscapes. A review. Agronomy for Sustainable Development, 2019, 39, 1.	2.2	39
16	Plant Succession on the Mount St. Helens Debris-Avalanche Deposit and the Role of Non-native Species. , 2018, , 149-164.		1
17	Ecological Responses to the 1980 Eruption of Mount St. Helens: Key Lessons and Remaining Questions. , 2018, , 1-18.		3
18	Risk and resilience in an uncertain world. Frontiers in Ecology and the Environment, 2018, 16, 3-3.	1.9	5

#	Article	IF	CITATIONS
19	Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems, 2018, 163, 73-88.	3.2	184
20	Bridging biofuel sustainability indicators and ecosystem services through stakeholder engagement. Biomass and Bioenergy, 2018, 114, 143-156.	2.9	21
21	<i>Emergent Properties of Sustainability: Using Agroecosystem Indicators within Spatial and Temporal Frameworks</i> . , 2018, , .		0
22	Ecological careers at Federally Funded Research and Development Centers. Frontiers in Ecology and the Environment, 2018, 16, 605-606.	1.9	1
23	Transatlantic wood pellet trade demonstrates telecoupled benefits. Ecology and Society, 2018, 23, .	1.0	25
24	Unnatural hypoxic regimes. Ecosphere, 2018, 9, e02408.	1.0	7
25	Assessing sustainability in agricultural landscapes: a review of approaches ^{1,2} . Environmental Reviews, 2018, 26, 299-315.	2.1	28
26	Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. GCB Bioenergy, 2017, 9, 1005-1023.	2.5	37
27	Reconciling food security and bioenergy: priorities for action. GCB Bioenergy, 2017, 9, 557-576.	2.5	112
28	The role of bioenergy in a climate-changing world. Environmental Development, 2017, 23, 57-64.	1.8	120
29	Interactive posters: A valuable means of enhancing communication and learning about productive paths toward sustainable bioenergy. Biofuels, Bioproducts and Biorefining, 2017, 11, 243-246.	1.9	7
30	Status and prospects for renewable energy using wood pellets from the southeastern United States. GCB Bioenergy, 2017, 9, 1296-1305.	2.5	52
31	How is wood-based pellet production affecting forest conditions in the southeastern United States?. Forest Ecology and Management, 2017, 396, 143-149.	1.4	38
32	Dataset of timberland variables used to assess forest conditions in two Southeastern United States× ³ fuelsheds. Data in Brief, 2017, 13, 278-290.	0.5	3
33	Ensuring that Ecological Science Contributes to Natural Resource Management Using a Delphi-Derived Approach. , 2017, , 103-124.		0
34	Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the southâ€eastern United States using different softwood feedstocks. GCB Bioenergy, 2017, 9, 1406-1422.	2.5	33
35	Reference scenarios for evaluating wood pellet production in the Southeastern United States. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e259.	1.9	12
36	Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States. Biofuels, Bioproducts and Biorefining, 2017, 11, 1007-1029.	1.9	39

#	Article	IF	CITATIONS
37	Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee. Ecosphere, 2016, 7, e01206.	1.0	19
38	A causal analysis framework for land-use change and the potential role of bioenergy policy. Land Use Policy, 2016, 59, 516-527.	2.5	36
39	Normalization in sustainability assessment: Methods and implications. Ecological Economics, 2016, 130, 195-208.	2.9	118
40	Incorporating bioenergy into sustainable landscape designs. Renewable and Sustainable Energy Reviews, 2016, 56, 1158-1171.	8.2	63
41	Climate Change and the Future of Natural Disturbances in the Central Hardwood Region. Managing Forest Ecosystems, 2016, , 355-369.	0.4	9
42	Risks to global biodiversity from fossilâ€fuel production exceed those from biofuel production. Biofuels, Bioproducts and Biorefining, 2015, 9, 177-189.	1.9	13
43	A framework for selecting indicators of bioenergy sustainability. Biofuels, Bioproducts and Biorefining, 2015, 9, 435-446.	1.9	47
44	Applications of aggregation theory to sustainability assessment. Ecological Economics, 2015, 114, 117-127.	2.9	71
45	Ecological objectives can be achieved with wood-derived bioenergy. Frontiers in Ecology and the Environment, 2015, 13, 297-299.	1.9	14
46	Environmental indicators for sustainable production of algal biofuels. Ecological Indicators, 2015, 49, 1-13.	2.6	35
47	Simulation games that integrate research, entertainment, and learning around ecosystem services. Ecosystem Services, 2014, 10, 195-201.	2.3	50
48	Take a Closer Look: Biofuels Can Support Environmental, Economic and Social Goals. Environmental Science & Technology, 2014, 48, 7200-7203.	4.6	120
49	Environmental Management: Past and Future Communications. Environmental Management, 2014, 54, 1-2.	1.2	3
50	Communicating About Bioenergy Sustainability. Environmental Management, 2013, 51, 279-290.	1.2	18
51	Environmental Indicators of Biofuel Sustainability: What About Context?. Environmental Management, 2013, 51, 291-306.	1.2	112
52	Comparing Scales of Environmental Effects from Gasoline and Ethanol Production. Environmental Management, 2013, 51, 307-338.	1.2	25
53	A landscape perspective on sustainability of agricultural systems. Landscape Ecology, 2013, 28, 1111-1123.	1.9	56
54	Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures. Ecological Indicators, 2013, 26, 87-102.	2.6	166

#	Article	IF	CITATIONS
55	Issues in using landscape indicators to assess land changes. Ecological Indicators, 2013, 28, 91-99.	2.6	60
56	Cultivated hay and fallow/idle cropland confound analysis of grassland conversion in the Western Corn Belt. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2863.	3.3	25
57	Modeling for Integrating Science and Management. , 2013, , 209-238.		3
58	Environmental and Socioeconomic Indicators for Bioenergy Sustainability as Applied toEucalyptus. International Journal of Forestry Research, 2013, 2013, 1-10.	0.2	5
59	Experimental response of understory plants to mechanized disturbance in an oak-pine forest. Ecological Indicators, 2012, 15, 181-187.	2.6	5
60	Multimetric spatial optimization of switchgrass plantings across a watershed. Biofuels, Bioproducts and Biorefining, 2012, 6, 58-72.	1.9	63
61	Integrated Forest Biorefineries: Sustainability Considerations for Forest Biomass Feedstocks. RSC Green Chemistry, 2012, , 80-97.	0.0	Ο
62	Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators, 2011, 11, 1277-1289.	2.6	186
63	Scientific analysis is essential to assess biofuel policy effects: In response to the paper by Kim and Dale on "Indirect land-use change for biofuels: Testing predictions and improving analytical methodologies― Biomass and Bioenergy, 2011, 35, 4488-4491.	2.9	31
64	The land use–climate change–energy nexus. Landscape Ecology, 2011, 26, 755-773.	1.9	161
65	Interactions among bioenergy feedstock choices, landscape dynamics, and land use. , 2011, 21, 1039-1054.		110
66	Studying the Past for the Future: Managing Modern Biodiversity from Historic and Prehistoric Data. Human Organization, 2010, 69, 149-157.	0.2	2
67	Environmental Management Welcomes a New Face and Reinforces Its Focus on Science-Based Stewardship. Environmental Management, 2010, 45, 1243-1243.	1.2	2
68	Modeling transient response of forests to climate change. Science of the Total Environment, 2010, 408, 1888-1901.	3.9	37
69	Bioenergy Sustainability at the Regional Scale. Ecology and Society, 2010, 15, .	1.0	38
70	Hypoxia in the Northern Gulf of Mexico. Springer Series on Environmental Management, 2010, , .	0.3	57
71	Nutrient Fate, Transport, and Sources. Springer Series on Environmental Management, 2010, , 51-109.	0.3	0
72	Characterization of Hypoxia. Springer Series on Environmental Management, 2010, , 9-50.	0.3	0

#	Article	IF	CITATIONS
73	Scientific Basis for Goals and Management Options. Springer Series on Environmental Management, 2010, , 111-204.	0.3	0
74	Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests. Canadian Journal of Forest Research, 2009, 39, 467-480.	0.8	15
75	Good policy follows good science: using criteria and indicators for assessing sustainable biofuel production. Ecotoxicology, 2009, 18, 1-4.	1.1	24
76	A Framework for Developing Management Goals for Species at Risk with Examples from Military Installations in the United States. Environmental Management, 2009, 44, 1163-1179.	1.2	12
77	Enhancing the ecological risk assessment process. Integrated Environmental Assessment and Management, 2008, 4, 306-313.	1.6	59
78	Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests. Ecological Indicators, 2008, 8, 818-827.	2.6	25
79	Sustainable Biofuels Redux. Science, 2008, 322, 49-50.	6.0	379
80	Biofuels: Effects on Land and Fire. Science, 2008, 321, 199-201.	6.0	48
81	Modeling the Effects of Land Use on the Quality of Water, Air, Noise, and Habitat for a Five-County Region in Georgia. Ecology and Society, 2008, 13, .	1.0	3
82	Landscape patterns as indicators of ecological change at Fort Benning, Georgia, USA. Landscape and Urban Planning, 2007, 79, 137-149.	3.4	55
83	The promise and the challenge of cooperative conservation. Frontiers in Ecology and the Environment, 2007, 5, 97-103.	1.9	3
84	Measures of the effects of agricultural practices on ecosystem services. Ecological Economics, 2007, 64, 286-296.	2.9	379
85	Bioregional planning in central Georgia, USA. Futures, 2006, 38, 471-489.	1.4	8
86	Comparing current and desired ecological conditions at a landscape scale in the Cumberland Plateau and Mountains, USA. Journal of Land Use Science, 2006, 1, 169-189.	1.0	5
87	Habitat Modeling Within a Regional Context: An Example Using Gopher Tortoise. American Midland Naturalist, 2006, 155, 335-351.	0.2	22
88	Vehicle impacts on the environment at different spatial scales: observations in west central Georgia, USA. Journal of Terramechanics, 2005, 42, 383-402.	1.4	17
89	Effects of modern volcanic eruptions on vegetation. , 2005, , 227-249.		28
90	ECOLOGICAL IMPACTS AND MITIGATION STRATEGIES FOR RURAL LAND MANAGEMENT. , 2005, 15, 1879-1892.		57

#	Article	IF	CITATIONS
91	Time-Series Analysis of Land Cover Using Landscape Metrics. GIScience and Remote Sensing, 2005, 42, 200-223.	2.4	16
92	ECOLOGY: 25 Years of Ecological Change at Mount St. Helens. Science, 2005, 308, 961-962.	6.0	57
93	ECOLOGICAL SUPPORT FOR RURAL LAND-USE PLANNING. , 2005, 15, 1906-1914.		79
94	Planning Transboundary Ecological Risk Assessments at Military Installations. Human and Ecological Risk Assessment (HERA), 2005, 11, 1193-1215.	1.7	6
95	Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico. Journal of Arid Environments, 2004, 59, 657-674.	1.2	62
96	Selecting a Suite of Ecological Indicators for Resource Management. , 2004, , 3-17.		2
97	Estimating baseline carbon emissions for the Eastern Panama Canal watershed. Mitigation and Adaptation Strategies for Global Change, 2003, 8, 323-348.	1.0	21
98	Plant reestablishment 15 years after the debris avalanche at Mount St. Helens, Washington. Science of the Total Environment, 2003, 313, 101-113.	3.9	56
99	New Directions in Ecological Modeling for Resource Management. , 2003, , 310-320.		1
100	Effect of military training on indicators of soil quality at Fort Benning, Georgia. Ecological Indicators, 2003, 3, 171-179.	2.6	42
101	Opportunities for Using Ecological Models for Resource Management. , 2003, , 3-19.		8
102	Barriers to the Use of Ecological Models in Decision Making. , 2003, , 109-122.		0
103	Evolving Approaches and Technologies to Enhance the Role of Ecological Modeling in Decision Making. , 2003, , 135-164.		3
104	What in the World Is Worth Fighting for? Using Models for Environmental Security. , 2003, , 289-309.		0
105	Estimating stand biomass in the Tamaulipan thornscrub of northeastern Mexico. Annals of Forest Science, 2002, 59, 813-821.	0.8	23
106	Understory vegetation indicators of anthropogenic disturbance in longleaf pine forests at Fort Benning, Georgia, USA. Ecological Indicators, 2002, 1, 155-170.	2.6	62
107	Science and Decisionmaking. , 2002, , 139-152.		2
108	A landscape-transition matrix approach for land management. , 2002, , 265-293.		7

7

#	Article	IF	CITATIONS
109	Environmental Management Fosters Enhanced Communication Through Cross-Disciplinary Studies. Environmental Management, 2002, 29, 1-2.	1.2	1
110	Broad-Scale Ecological Science and Its Application. , 2002, , 34-52.		7
111	Climate Change and Forest Disturbances. BioScience, 2001, 51, 723.	2.2	1,682
112	Global Change in Forests: Responses of Species, Communities, and Biomes. BioScience, 2001, 51, 765.	2.2	371
113	Challenges in the development and use of ecological indicators. Ecological Indicators, 2001, 1, 3-10.	2.6	994
114	Biodiversity in US Forests under Global Climate Change. Ecosystems, 2001, 4, 161-163.	1.6	13
115	Experimenting with multi-attribute utility survey methods in a multi-dimensional valuation problem. Ecological Economics, 2001, 36, 87-108.	2.9	20
116	Ecological Guidelines for Land Use and Management. , 2001, , 3-33.		4
117	Communicating Ecological Indicators to Decision Makers and the Public. Ecology and Society, 2001, 5, .	0.9	95
118	Applying Ecological Guidelines for Land Management to Farming in the Brazilian Amazon. , 2001, , 213-225.		18
119	Ecological Principles and Guidelines for Managing the Use of Land. , 2000, 10, 639.		35
120	Perspectives on Land Use1. , 2000, 10, 671-672.		0
121	The interplay between climate change, forests, and disturbances. Science of the Total Environment, 2000, 262, 201-204.	3.9	181
122	The Role of Soil Classification in Geographic Information System Modeling of Habitat Pattern: Threatened Calcareous Ecosystems. Ecosystems, 1999, 2, 524-538.	1.6	24
123	Tools to Characterize the Environmental Setting. , 1999, , 62-93.		6
124	Large, Infrequent Disturbances: Comparing Large, Infrequent Disturbances: What Have We Learned?. Ecosystems, 1998, 1, 493-496.	1.6	222
125	Ecosystem Management in the Context of Large, Infrequent Disturbances. Ecosystems, 1998, 1, 546-557.	1.6	115
126	Assessing Land-Use Impacts on Natural Resources. Environmental Management, 1998, 22, 203-211.	1.2	46

#	Article	IF	CITATIONS
127	Managing Forests as Ecosystems: A Success Story or a Challenge Ahead?. , 1998, , 50-68.		5
128	THE RELATIONSHIP BETWEEN LAND-USE CHANGE AND CLIMATE CHANGE. , 1997, 7, 753-769.		438
129	Fires, Hurricanes, and Volcanoes: Comparing Large Disturbances. BioScience, 1997, 47, 758-768.	2.2	169
130	Patterns and impacts of deforestation in Rondônia, Brazil. Landscape and Urban Planning, 1997, 38, 149-157.	3.4	59
131	Using satellite remote sensing analysis to evaluate a socio-economic and ecological model of deforestation in Rondônia, Brazil. International Journal of Remote Sensing, 1996, 17, 3233-3255.	1.3	45
132	Farming in Rondônia. Resources and Energy Economics, 1995, 17, 155-188.	1.1	50
133	Effects of forest fragmentation on neotropical fauna: current research and data availability. Environmental Reviews, 1995, 3, 191-211.	2.1	63
134	Assessing impacts of climate change on forests: The state of biological modeling. Climatic Change, 1994, 28, 65-90.	1.7	45
135	Relating Patterns of Land-Use Change to Faunal Biodiversity in the Central Amazon. Conservation Biology, 1994, 8, 1027-1036.	2.4	205
136	Modeling Effects of Land Management in the Brazilian Amazonian Settlement of Rondonia. Conservation Biology, 1994, 8, 196-206.	2.4	111
137	Assessing Impacts of Climate Change on Forests: The State of Biological Modeling. , 1994, , 65-90.		13
138	A Percolation Model of Ecological Flows. Ecological Studies, 1992, , 259-269.	0.4	22
139	Estimating the effects of land-use change on global atmospheric CO2 concentrations. Canadian Journal of Forest Research, 1991, 21, 84-90.	0.8	15
140	Elevation-mediated effects of balsam woolly adelgid on southern Appalachian spruce–fir forests. Canadian Journal of Forest Research, 1991, 21, 1639-1648.	0.8	17
141	Sampling ecological information: Choice of sample size. Ecological Modelling, 1991, 57, 1-10.	1.2	8
142	Modeling Landscape Disturbance. Ecological Studies, 1991, , 323-351.	0.4	32
143	The long-term influence of past land use on the Walker Branch forest. Landscape Ecology, 1990, 4, 211-224.	1.9	15
144	How Increasing CO2and Climate Change Affect Forests. BioScience, 1990, 40, 575-587.	2.2	96

#	Article	IF	CITATIONS
145	Potential effects of climate change on stand development in the Pacific Northwest. Canadian Journal of Forest Research, 1989, 19, 1581-1590.	0.8	45
146	Wind dispersed seeds and plant recovery on the Mount St. Helens debris avalanche. Canadian Journal of Botany, 1989, 67, 1434-1441.	1.2	64
147	Predicting across scales comments of the guest editors of Landscape Ecology. Landscape Ecology, 1989, 3, 147-151.	1.9	19
148	Quantifying scale-dependent effects of animal movement with simple percolation models. Landscape Ecology, 1989, 3, 217-227.	1.9	147
149	Predicting across scales: Theory development and testing. Landscape Ecology, 1989, 3, 245-252.	1.9	313
150	Predicting the Spread of Disturbance across Heterogeneous Landscapes. Oikos, 1989, 55, 121.	1.2	278
151	Indices of landscape pattern. Landscape Ecology, 1988, 1, 153-162.	1.9	1,293
152	Using sensitivity and uncertainty analyses to improve predictions of broad-scale forest development. Ecological Modelling, 1988, 42, 165-178.	1.2	29
153	Successional changes in nitrogen availability as a potential factor contributing to spruce declines in boreal North America. Canadian Journal of Forest Research, 1987, 17, 1394-1400.	0.8	108
154	The role of stand history in assessing forest impacts. Environmental Management, 1987, 11, 351-357.	1.2	5
155	Modeling the long-term effects of disturbances on forest succession, Olympic Peninsula, Washington. Canadian Journal of Forest Research, 1986, 16, 56-67.	0.8	36
156	A comparison of tree growth models. Ecological Modelling, 1985, 29, 145-169.	1.2	96
157	Temporal patterning of blooming phenology in Pedicularis on Mount Rainier. Canadian Journal of Botany, 1983, 61, 786-791.	1.2	12
158	Stability analysis of the time delay in a host-parasitoid model. Journal of Theoretical Biology, 1980, 83, 43-62.	0.8	10
159	Enacting boundaries or building bridges? Language and engagement in food-energy-water systems science. Socio-Ecological Practice Research, 0, , .	0.9	7