Yanshan Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4369891/publications.pdf

Version: 2024-02-01

		394421	477307
31	1,449	19	29
papers	citations	h-index	g-index
38	38	38	2074
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Research, 2019, 29, 233-247.	12.0	175
2	SWATH enables precise label-free quantification on proteome scale. Proteomics, 2015, 15, 1215-1223.	2.2	140
3	A Novel Drosophila Model of Nerve Injury Reveals an Essential Role of Nmnat in Maintaining Axonal Integrity. Current Biology, 2012, 22, 590-595.	3.9	130
4	Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes and Development, 2007, 21, 1506-1518.	5.9	129
5	Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation. Molecular Cell, 2020, 79, 443-458.e7.	9.7	118
6	A <i>Drosophila </i> model for Angelman syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12399-12404.	7.1	93
7	Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31123-31133.	7.1	66
8	Behavioral and Neurochemical Alterations in Mice Lacking the RNA-Binding Protein Translin. Journal of Neuroscience, 2006, 26, 2184-2196.	3.6	65
9	Axon Degeneration and Regeneration: Insights from <i>Drosophila</i> Models of Nerve Injury. Annual Review of Cell and Developmental Biology, 2012, 28, 575-597.	9.4	62
10	Cooperative Interaction between Phosphorylation Sites on PERIOD Maintains Circadian Period in Drosophila. PLoS Genetics, 2013, 9, e1003749.	3.5	54
11	Distinct multilevel misregulations of Parkin and PINK1 revealed in cell and animal models of TDP-43 proteinopathy. Cell Death and Disease, 2018, 9, 953.	6.3	38
12	Multidimensional Proteomics Identifies Declines in Protein Homeostasis and Mitochondria as Early Signals for Normal Aging and Age-associated Disease in Drosophila*[S]. Molecular and Cellular Proteomics, 2019, 18, 2078-2088.	3.8	38
13	Selective Mitochondrial Protein Labeling Enabled by Biocompatible Photocatalytic Reactions inside Live Cells. Jacs Au, 2021, 1, 1066-1075.	7.9	35
14	The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nature Communications, 2020, 11, 6349.	12.8	33
15	<i>In vivo</i> imaging reveals mitophagy independence in the maintenance of axonal mitochondria during normal aging. Aging Cell, 2017, 16, 1180-1190.	6.7	32
16	New insights of poly(ADP-ribosylation) in neurodegenerative diseases: A focus on protein phase separation and pathologic aggregation. Biochemical Pharmacology, 2019, 167, 58-63.	4.4	32
17	Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Research, 2021, 31, 1024-1027.	12.0	30
18	Molecular Analysis of Sleep: Wake Cycles in <i>Drosophila</i> . Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 557-564.	1.1	29

#	Article	IF	Citations
19	Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Molecular Psychiatry, 2023, 28, 931-945.	7.9	24
20	The Drama of Wallerian Degeneration: The Cast, Crew, and Script. Annual Review of Genetics, 2021, 55, 93-113.	7.6	22
21	Design and implementation of in vivo imaging of neural injury responses in the adult Drosophila wing. Nature Protocols, 2013, 8, 810-819.	12.0	21
22	Nicotinamide mononucleotide adenylyltransferase uses its NAD+ substrate-binding site to chaperone phosphorylated Tau. ELife, 2020, 9, .	6.0	18
23	Transducing oxidative stress to death signals in neurons. Journal of Cell Biology, 2015, 211, 741-743.	5.2	14
24	Rapid depletion of ESCRT protein Vps4 underlies injury-induced autophagic impediment and Wallerian degeneration. Science Advances, 2019, 5, eaav4971.	10.3	14
25	Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. IScience, 2022, 25, 104356.	4.1	14
26	CHMP2B regulates TDP-43 phosphorylation and cytotoxicity independent of autophagy via CK1. Journal of Cell Biology, 2022, 221, .	5.2	11
27	Quantitative Proteomic Analysis of Mouse Sciatic Nerve Reveals Post-injury Upregulation of ADP-Dependent Glucokinase Promoting Macrophage Phagocytosis. Frontiers in Molecular Neuroscience, 2021, 14, 777621.	2.9	4
28	Hope on the (fruit) fly: the <i>Drosophila</i> wing paradigm of axon injury. Neural Regeneration Research, 2015, 10, 173.	3.0	2
29	The mouse nicotinamide mononucleotide adenylyltransferase chaperones diverse pathological amyloid client proteins. Journal of Biological Chemistry, 2022, 298, 101912.	3.4	1
30	Protein Phosphatases and Circadian Clocks. , 2010, , 877-881.		0
31	Poly(ADP-ribosylation) regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. IBRO Reports, 2019, 6, S499.	0.3	0