
Tomas M Mustelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autoantibodies Against Unmodified and Citrullinated Human Endogenous Retrovirus K Envelope Protein in Patients With Rheumatoid Arthritis. Journal of Rheumatology, 2022, 49, 26-35.	2.0	4
2	Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. Journal of Clinical Medicine, 2021, 10, 856.	2.4	10
3	IgG and IgA autoantibodies against L1 ORF1p expressed in granulocytes correlate with granulocyte consumption and disease activity in pediatric systemic lupus erythematosus. Arthritis Research and Therapy, 2021, 23, 153.	3.5	4
4	Allergic Aspects of IgG4-Related Disease: Implications for Pathogenesis and Therapy. Frontiers in Immunology, 2021, 12, 693192.	4.8	20
5	Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
6	Autoantibodies against the envelope proteins of endogenous retroviruses K102 and K108 in patients with systemic lupus erythematosus correlate with active disease. Clinical and Experimental Rheumatology, 2021, , .	0.8	0
7	High Prevalence and Disease Correlation of Autoantibodies Against p40 Encoded by Long Interspersed Nuclear Elements in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2020, 72, 89-99.	5.6	29
8	Reply. Arthritis and Rheumatology, 2020, 72, 376-377.	5.6	0
9	How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Frontiers in Immunology, 2020, 11, 593891.	4.8	18
10	Role of Neutrophils in Systemic Vasculitides. Frontiers in Immunology, 2020, 11, 619705.	4.8	29
11	Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood, 2019, 134, 1072-1083.	1.4	94
12	Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2019, 10, 1028.	4.8	42
13	Autoantibodies against citrullinated serum albumin in patients with rheumatoid arthritis. Journal of Translational Autoimmunity, 2019, 2, 100023.	4.0	4
14	The Contribution of <i>PTPN22</i> to Rheumatic Disease. Arthritis and Rheumatology, 2019, 71, 486-495.	5.6	42
15	Serum biomarker profiles suggest that atopic dermatitis is a systemic disease. Journal of Allergy and Clinical Immunology, 2018, 141, 1523-1526.	2.9	45
16	Affinity maturation shapes the function of agonistic antibodies to peptidylarginine deiminase type 4 in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2018, 77, 141-148.	0.9	13
17	Evidence for a direct link between PAD4-mediated citrullination and the oxidative burst in human neutrophils. Scientific Reports, 2018, 8, 15228.	3.3	74
18	Six new species and one new subspecies of noctuid moths from western United States of America and Mexico (Lepidoptera, Noctuidae). ZooKeys, 2018, 788, 201-239.	1.1	2

#	Article	IF	CITATIONS
19	Survey of the Lepidoptera in the North-Central Olympic National Park, Washington, USA. Journal of the Lepidopterists' Society, 2018, 72, 284-295.	0.2	1
20	Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases. , 2017, 169, 113-123.		18
21	Moving toward endotypes in atopic dermatitis: Identification of patient clusters based on serum biomarker analysis. Journal of Allergy and Clinical Immunology, 2017, 140, 730-737.	2.9	127
22	Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nature Chemical Biology, 2017, 13, 624-632.	8.0	56
23	Cutting Edge: Eosinophils Undergo Caspase-1–Mediated Pyroptosis in Response to Necrotic Liver Cells. Journal of Immunology, 2017, 199, 847-853.	0.8	27
24	Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. , 2017, 169, 57-77.		65
25	The complex biology and contribution of <i>Staphylococcus aureus</i> in atopic dermatitis, current and future therapies. British Journal of Dermatology, 2017, 177, 63-71.	1.5	40
26	Spontaneous Secretion of the Citrullination Enzyme PAD2 and Cell Surface Exposure of PAD4 by Neutrophils. Frontiers in Immunology, 2017, 8, 1200.	4.8	82
27	Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight, 2017, 2, .	5.0	51
28	TGFβ responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Annals of the Rheumatic Diseases, 2016, 75, 295-302.	0.9	35
29	Autoimmune manifestations in aged mice arise from early-life immune dysregulation. Science Translational Medicine, 2016, 8, 361ra137.	12.4	38
30	Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Scientific Reports, 2016, 6, 33346.	3.3	27
31	Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nature Immunology, 2016, 17, 196-203.	14.5	130
32	Characterization of the Hypercitrullination Reaction in Human Neutrophils and Other Leukocytes. Mediators of Inflammation, 2015, 2015, 1-9.	3.0	20
33	Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Science Translational Medicine, 2015, 7, 288ra76.	12.4	44
34	Dual-Specificity Phosphatase 3 Deficiency or Inhibition Limits Platelet Activation and Arterial Thrombosis. Circulation, 2015, 131, 656-668.	1.6	42
35	DUSP3 Genetic Deletion Confers M2-like Macrophage–Dependent Tolerance to Septic Shock. Journal of Immunology, 2015, 194, 4951-4962.	0.8	28
36	Cigarette Smoke Silences Innate Lymphoid Cell Function and Facilitates an Exacerbated Type I Interleukin-33-Dependent Response to Infection. Immunity, 2015, 42, 566-579.	14.3	263

#	Article	IF	CITATIONS
37	Synergistic Actions of Blocking Angiopoietin-2 and Tumor Necrosis Factor-α in Suppressing Remodeling of Blood Vessels and Lymphatics in Airway Inflammation. American Journal of Pathology, 2015, 185, 2949-2968.	3.8	22
38	Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nature Communications, 2015, 6, 8327.	12.8	207
39	Revision of the genus Aseptis McDunnough (Lepidoptera, Noctuidae, Noctuinae, Xylenini) with a description of two new genera, Paraseptis and Viridiseptis. ZooKeys, 2015, 527, 57-102.	1.1	5
40	DUSP3/VHR is a pro-angiogenic atypical dual-specificity phosphatase. Molecular Cancer, 2014, 13, 108.	19.2	40
41	Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis and Tissue Repair, 2013, 6, 20.	3.4	88
42	The autoimmune-predisposing variant of lymphoid tyrosine phosphatase favors T helper 1 responses. Human Immunology, 2013, 74, 574-585.	2.4	48
43	Protein Tyrosine Phosphatase Expression Profile of Rheumatoid Arthritis Fibroblastâ€like Synoviocytes: A Novel Role of SH2 Domain–Containing Phosphatase 2 as a Modulator of Invasion and Survival. Arthritis and Rheumatism, 2013, 65, 1171-1180.	6.7	43
44	Five new species and three new subspecies of Erebidae and Noctuidae (Insecta, Lepidoptera) from Northwestern North America, with notes on Chytolita Grote (Erebidae) and Hydraecia GuenA©e (Noctuidae). ZooKeys, 2013, 264, 85-123.	1.1	5
45	Are mast cells instrumental for fibrotic diseases?. Frontiers in Pharmacology, 2013, 4, 174.	3.5	76
46	LYP inhibits T-cell activation when dissociated from CSK. Nature Chemical Biology, 2012, 8, 437-446.	8.0	118
47	Inhibition of Hematopoietic Protein Tyrosine Phosphatase Augments and Prolongs ERK1/2 and p38 Activation. ACS Chemical Biology, 2012, 7, 367-377.	3.4	31
48	SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nature Communications, 2012, 3, 911.	12.8	160
49	Dynamic interaction between lymphoid tyrosine phosphatase and Câ€ŧerminal Src kinase controls T cell activation. FASEB Journal, 2012, 26, 766.11.	0.5	0
50	Inhibition of Hematopoietic Protein Tyrosine Phosphatase Augments and Prolongs ERK1/2 and p38 Activation. FASEB Journal, 2012, 26, 766.12.	0.5	0
51	Ubiquitin Ligase Substrate Identification through Quantitative Proteomics at Both the Protein and Peptide Levels. Journal of Biological Chemistry, 2011, 286, 41530-41538.	3.4	76
52	Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids. ACS Medicinal Chemistry Letters, 2011, 2, 113-118.	2.8	7
53	Inhibition of Lymphoid Tyrosine Phosphatase by Benzofuran Salicylic Acids. Journal of Medicinal Chemistry, 2011, 54, 562-571.	6.4	35
54	Carbon Nanotube-Based Nanocarriers: The Importance of Keeping It Clean. Journal of Nanoscience and Nanotechnology, 2010, 10, 5293-5301.	0.9	31

Tomas M Mustelin

#	Article	IF	CITATIONS
55	Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases. Seminars in Immunopathology, 2010, 32, 127-136.	6.1	48
56	In Silico Screening for PTPN22 Inhibitors: Active Hits from an Inactive Phosphatase Conformation. ChemMedChem, 2009, 4, 440-444.	3.2	32
57	PTEN regulation by Akt–EGR1–ARF–PTEN axis. EMBO Journal, 2009, 28, 21-33.	7.8	122
58	Multidentate Small-Molecule Inhibitors of <i>Vaccinia</i> H1-Related (VHR) Phosphatase Decrease Proliferation of Cervix Cancer Cells. Journal of Medicinal Chemistry, 2009, 52, 6716-6723.	6.4	53
59	Characterization of New Substrates Targeted By Yersinia Tyrosine Phosphatase YopH. PLoS ONE, 2009, 4, e4431.	2.5	28
60	A Conserved Mechanism for Control of Human and Mouse Embryonic Stem Cell Pluripotency and Differentiation by Shp2 Tyrosine Phosphatase. PLoS ONE, 2009, 4, e4914.	2.5	48
61	KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS Journal, 2008, 275, 3900-3910.	4.7	75
62	Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR. BMC Cancer, 2008, 8, 147.	2.6	53
63	Protein Tyrosine Phosphatases in Autoimmunity. Annual Review of Immunology, 2008, 26, 29-55.	21.8	164
64	SKAP55 modulates T cell antigen receptor-induced activation of the Ras–Erk–AP1 pathway by binding RasGRP1. Molecular Immunology, 2008, 45, 510-522.	2.2	22
65	TCR-induced downregulation of protein tyrosine phosphatase PEST augments secondary T cell responses. Molecular Immunology, 2008, 45, 3074-3084.	2.2	22
66	IMMUNOHISTOCHEMICAL ANALYSES OF PHOSPHATASES IN CHILDHOOD B-CELL LYMPHOMA: Lower Expression of PTEN and HePTP and Higher Number of Positive Cells for Nuclear SHP2 in B-Cell Lymphoma Cases Compared to Controls. Pediatric Hematology and Oncology, 2008, 25, 528-540.	0.8	14
67	Cell-Type Specific and Cytoplasmic Targeting of PEGylated Carbon Nanotube-Based Nanoassemblies. Journal of Nanoscience and Nanotechnology, 2008, 8, 2259-2269.	0.9	33
68	A Brief Introduction to the Protein Phosphatase Families. , 2007, 365, 9-22.		31
69	Trophoblast cell activation by trophinin ligation is implicated in human embryo implantation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3799-3804.	7.1	60
70	Cutting Edge: Selective Tyrosine Dephosphorylation of Interferon-Activated Nuclear STAT5 by the VHR Phosphatase. Journal of Immunology, 2007, 179, 3402-3406.	0.8	66
71	Targeting Host Cell Furin Proprotein Convertases as a Therapeutic Strategy against Bacterial Toxins and Viral Pathogens*. Journal of Biological Chemistry, 2007, 282, 20847-20853.	3.4	93
72	Association of Protein-tyrosine Phosphatase MEG2 via Its Sec14p Homology Domain with Vesicle-trafficking Proteins. Journal of Biological Chemistry, 2007, 282, 15170-15178.	3.4	26

#	Article	IF	CITATIONS
73	Differential phosphorylation of NG2 proteoglycan by ERK and PKCα helps balance cell proliferation and migration. Journal of Cell Biology, 2007, 178, 155-165.	5.2	102
74	A Weak Lck Tail Bite Is Necessary for Lck Function in T Cell Antigen Receptor Signaling. Journal of Biological Chemistry, 2007, 282, 36000-36009.	3.4	29
75	Normal TCR Signal Transduction in Mice That Lack Catalytically Active PTPN3 Protein Tyrosine Phosphatase. Journal of Immunology, 2007, 178, 3680-3687.	0.8	37
76	Strategies for developing protein tyrosine phosphatase inhibitors. Methods, 2007, 42, 250-260.	3.8	48
77	PTPome-wide functional RNA interference screening methods. Methods, 2007, 42, 306-312.	3.8	1
78	The lipid-binding SEC14 domain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 719-726.	2.4	100
79	Protein expression and cellular localization in two prognostic subgroups of diffuse large B-cell lymphoma: Higher expression of ZAP70 and PKC-1² II in the non-germinal center group and poor survival in patients deficient in nuclear PTEN. Leukemia and Lymphoma, 2007, 48, 2221-2232.	1.3	52
80	Development of Molecular Probes for Second-Site Screening and Design of Protein Tyrosine Phosphatase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 2137-2143.	6.4	37
81	Luminescent Silica Nanobeads:Â Characterization and Evaluation as Efficient Cytoplasmatic Transporters for T-Lymphocytes. Journal of the American Chemical Society, 2007, 129, 7814-7823.	13.7	26
82	Protein tyrosine phosphatasePTPN22in human autoimmunity. Autoimmunity, 2007, 40, 453-461.	2.6	151
83	Noncovalently silylated carbon nanotubes decorated with quantum dots. Carbon, 2007, 45, 673-676.	10.3	10
84	Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding. Molecular Neurodegeneration, 2007, 2, 23.	10.8	15
85	Crystal structure of NMA1982 from <i>Neisseria meningitidis</i> at 1.5 Ã resolution provides a structural scaffold for nonclassical, eukaryoticâ€like phosphatases. Proteins: Structure, Function and Bioinformatics, 2007, 69, 415-421.	2.6	11
86	Nanosynthesis by candlelight. Nature Nanotechnology, 2007, 2, 599-600.	31.5	36
87	A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death and Differentiation, 2007, 14, 436-446.	11.2	91
88	Identification and characterization of DUSP27, a novel dual-specific protein phosphatase. FEBS Letters, 2007, 581, 2527-2533.	2.8	36
89	An Adamantyl-Substituted Retinoid-Derived Molecule That Inhibits Cancer Cell Growth and Angiogenesis by Inducing Apoptosis and Binds to Small Heterodimer Partner Nuclear Receptor:Â Effects of Modifying Its Carboxylate Group on Apoptosis, Proliferation, and Protein-Tyrosine Phosphatase Activity. Journal of Medicinal Chemistry, 2007, 50, 2622-2639.	6.4	57
90	Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. International Journal of Nanomedicine, 2007, 2, 227-33.	6.7	49

#	Article	IF	CITATIONS
91	Dispersion of Pristine Single-walled Carbon Nanotubes in Water by a Thiolated Organosilane:Â Application in Supramolecular Nanoassemblies. Journal of Physical Chemistry B, 2006, 110, 13685-13688.	2.6	19
92	Isolation and Characterization of Fluorescent Nanoparticles from Pristine and Oxidized Electric Arc-Produced Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 831-836.	2.6	187
93	Protein Tyrosine Phosphatases in Human Disease. , 2006, 584, 53-72.		7
94	Adsorption of Streptavidin onto Single-Walled Carbon Nanotubes: Application in Fluorescent Supramolecular Nanoassemblies. Journal of Nanoscience and Nanotechnology, 2006, 6, 3693-3698.	0.9	6
95	Targeting the PTPome in human disease. Expert Opinion on Therapeutic Targets, 2006, 10, 157-177.	3.4	101
96	Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicology Letters, 2006, 160, 121-126.	0.8	622
97	Full-Length Single-Walled Carbon Nanotubes Decorated with Streptavidin-Conjugated Quantum Dots as Multivalent Intracellular Fluorescent Nanoprobes. Biomacromolecules, 2006, 7, 2259-2263.	5.4	89
98	Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Seminars in Immunology, 2006, 18, 207-213.	5.6	303
99	Are other protein tyrosine phosphatases than PTPN22 associated with autoimmunity?. Seminars in Immunology, 2006, 18, 254-260.	5.6	18
100	Taxonomy of southern California Erebidae and Noctuidae (Lepidoptera) with descriptions of twenty one new species. Zootaxa, 2006, 1278, 1.	0.5	5
101	Loss of the VHR dual-specific phosphatase causescell-cycle arrest and senescence. Nature Cell Biology, 2006, 8, 524-531.	10.3	114
102	Non-destructive decoration of full-length multi-walled carbon nanotubes with variable amounts of silica gel nanoparticles. Carbon, 2006, 44, 1301-1303.	10.3	15
103	Synthesis and Characterization of Supramolecular Nanostructures of Carbon Nanotubes and Ruthenium-Complex Luminophores. Journal of Nanoscience and Nanotechnology, 2006, 6, 1381-1386.	0.9	25
104	Challenges and optimism for nanoengineering. Nanomedicine, 2006, 1, 383-385.	3.3	3
105	Regulation of MAP Kinases by the VHR Dual-Specific Phosphatase – Implications for Cell Growth and Differentiation. Cell Cycle, 2006, 5, 2210-2215.	2.6	34
106	IMMUNOLOGY: Restless T Cells Sniff and Go. Science, 2006, 313, 1902-1903.	12.6	11
107	Regulation of the Ring Finger E3 Ligase Siah2 by p38 MAPK. Journal of Biological Chemistry, 2006, 281, 35316-35326.	3.4	75
108	Lipid Raft Targeting of Hematopoietic Protein Tyrosine Phosphatase by Protein Kinase C Î,-Mediated Phosphorylation. Molecular and Cellular Biology, 2006, 26, 1806-1816.	2.3	32

#	Article	IF	CITATIONS
109	SHP1 expression in bone marrow biopsies of myelodysplastic syndrome patients: a new prognostic factor. British Journal of Haematology, 2005, 129, 791-794.	2.5	22
110	Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature Genetics, 2005, 37, 1317-1319.	21.4	643
111	Protein tyrosine phosphatases and the immune response. Nature Reviews Immunology, 2005, 5, 43-57.	22.7	322
112	Secretion of the mammalian Sec14p-like phosphoinositide-binding p45 protein. FEBS Journal, 2005, 272, 5595-5605.	4.7	14
113	The C?terminus of T?cell-specific adapter protein (TSAd) is necessary for TSAd-mediated inhibition of Lck activity. European Journal of Immunology, 2005, 35, 1612-1620.	2.9	23
114	Crystallization of the SH2-binding site of p130Cas in complex with Lck, a Src-family kinase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 174-177.	0.7	4
115	Co-factors p300 and CBP catch egr1 in their network. Prostate, 2005, 63, 407-410.	2.3	6
116	Yersinia Phosphatase Induces Mitochondrially Dependent Apoptosis of T Cells. Journal of Biological Chemistry, 2005, 280, 10388-10394.	3.4	24
117	Inhibition of Yersinia Tyrosine Phosphatase by Furanyl Salicylate Compounds. Journal of Biological Chemistry, 2005, 280, 9400-9408.	3.4	58
118	Removal of C-Terminal Src Kinase from the Immune Synapse by a New Binding Protein. Molecular and Cellular Biology, 2005, 25, 2227-2241.	2.3	31
119	Cooperative Phosphorylation of the Tumor Suppressor Phosphatase and Tensin Homologue (PTEN) by Casein Kinases and Glycogen Synthase Kinase 31². Journal of Biological Chemistry, 2005, 280, 35195-35202.	3.4	213
120	Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. Journal of Experimental Medicine, 2005, 202, 1587-1597.	8.5	48
121	In Vitro Characterization of the <i>Bacillus subtilis</i> Protein Tyrosine Phosphatase YwqE. Journal of Bacteriology, 2005, 187, 3384-3390.	2.2	49
122	Low-Molecular-Weight Protein Tyrosine Phosphatases of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2005, 187, 4945-4956.	2.2	51
123	Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chemical Communications, 2005, , 758.	4.1	104
124	Structure of the Hematopoietic Tyrosine Phosphatase (HePTP) Catalytic Domain: Structure of a KIM Phosphatase with Phosphate Bound at the Active Site. Journal of Molecular Biology, 2005, 354, 150-163.	4.2	39
125	The Minimal Essential Core of a Cysteine-based Protein-tyrosine Phosphatase Revealed by a Novel 16-kDa VH1-like Phosphatase, VHZ. Journal of Biological Chemistry, 2004, 279, 35768-35774.	3.4	31
126	VHY, a Novel Myristoylated Testis-restricted Dual Specificity Protein Phosphatase Related to VHX. Journal of Biological Chemistry, 2004, 279, 32586-32591.	3.4	20

#	Article	IF	CITATIONS
127	TCR- and CD28-Mediated Recruitment of Phosphodiesterase 4 to Lipid Rafts Potentiates TCR Signaling. Journal of Immunology, 2004, 173, 4847-4858.	0.8	123
128	Lck Dephosphorylation at Tyr-394 and Inhibition of T Cell Antigen Receptor Signaling by Yersinia Phosphatase YopH. Journal of Biological Chemistry, 2004, 279, 4922-4928.	3.4	94
129	Phosphorylation of NG2 Proteoglycan by Protein Kinase C-α Regulates Polarized Membrane Distribution and Cell Motility. Journal of Biological Chemistry, 2004, 279, 55262-55270.	3.4	58
130	Haematopoietic protein tyrosine phosphatase (HePTP) phosphorylation by cAMP-dependent protein kinase in T-cells: dynamics and subcellular location. Biochemical Journal, 2004, 378, 335-342.	3.7	43
131	Control of vesicle fusion by a tyrosine phosphatase. Nature Cell Biology, 2004, 6, 831-839.	10.3	97
132	A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nature Genetics, 2004, 36, 337-338.	21.4	1,226
133	Knockdown of C-terminal Src kinase by siRNA-mediated RNA interference augments T cell receptor signaling in mature T cells. European Journal of Immunology, 2004, 34, 2191-2199.	2.9	43
134	NMR-based techniques in the hit identification and optimisation processes. Expert Opinion on Therapeutic Targets, 2004, 8, 597-611.	3.4	69
135	Protein Tyrosine Phosphatases in the Human Genome. Cell, 2004, 117, 699-711.	28.9	1,697
136	Protein tyrosine phosphatases in T cell physiology. Molecular Immunology, 2004, 41, 687-700.	2.2	84
137	Role of protein tyrosine phosphatases in T cell activation. Immunological Reviews, 2003, 191, 139-147.	6.0	56
138	Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nature Immunology, 2003, 4, 44-48.	14.5	94
139	Critical Role of Ser-520 Phosphorylation for Membrane Recruitment and Activation of the ZAP-70 Tyrosine Kinase in T Cells. Molecular and Cellular Biology, 2003, 23, 7667-7677.	2.3	6
140	Aurintricarboxylic Acid Blocks in Vitro and in Vivo Activity of YopH, an Essential Virulent Factor of Yersinia pestis, the Agent of Plague. Journal of Biological Chemistry, 2003, 278, 41734-41741.	3.4	75
141	Homotypic Secretory Vesicle Fusion Induced by the Protein Tyrosine Phosphatase MEG2 Depends on Polyphosphoinositides in T Cells. Journal of Immunology, 2003, 171, 6661-6671.	0.8	44
142	Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochemical Journal, 2003, 371, 15-27.	3.7	242
143	Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Biochemical Journal, 2003, 372, 271-278.	3.7	44
144	Inhibition of T Cell Antigen Receptor Signaling by VHR-related MKPX (VHX), a New Dual Specificity Phosphatase Related to VH1 Related (VHR). Journal of Biological Chemistry, 2002, 277, 5524-5528.	3.4	73

#	Article	IF	CITATIONS
145	Grap Negatively Regulates T-Cell Receptor-Elicited Lymphocyte Proliferation and Interleukin-2 Induction. Molecular and Cellular Biology, 2002, 22, 3230-3236.	2.3	41
146	Enlargement of Secretory Vesicles by Protein Tyrosine Phosphatase PTP-MEG2 in Rat Basophilic Leukemia Mast Cells and Jurkat T Cells. Journal of Immunology, 2002, 168, 4612-4619.	0.8	54
147	Meeting at Mitosis: Cell Cycle-Specific Regulation of c-Src by RPTPÂ. Science Signaling, 2002, 2002, pe3-pe3.	3.6	18
148	Arginine Methylation of STAT1 Regulates Its Dephosphorylation by T Cell Protein Tyrosine Phosphatase. Journal of Biological Chemistry, 2002, 277, 35787-35790.	3.4	84
149	Negative Feedback Regulation of the Tumor Suppressor PTEN by Phosphoinositide-Induced Serine Phosphorylation. Journal of Immunology, 2002, 169, 286-291.	0.8	66
150	Activation of ZAP-70 through Specific Dephosphorylation at the Inhibitory Tyr-292 by the Low Molecular Weight Phosphotyrosine Phosphatase (LMPTP). Journal of Biological Chemistry, 2002, 277, 24220-24224.	3.4	86
151	SHP2 REGULATES IL-2 INDUCED MAPK ACTIVATION, BUT NOT Stat3 OR Stat5 TYROSINE PHOSPHORYLATION, IN CUTANEOUS T CELL LYMPHOMA CELLS. Cytokine, 2002, 20, 141-147.	3.2	12
152	Protein tyrosine phosphorylation in T cell signaling. Frontiers in Bioscience - Landmark, 2002, 7, d918-969.	3.0	67
153	Protein tyrosine phosphorylation in T cell signaling. Frontiers in Bioscience - Landmark, 2002, 7, d918.	3.0	37
154	Low-molecular-weight protein tyrosine phosphatase and human disease: in search of biochemical mechanisms. Archivum Immunologiae Et Therapiae Experimentalis, 2002, 50, 95-104.	2.3	47
155	Keeping the T-Cell Immune Response in Balance: Role of Protein Tyrosine Phosphatases in Autoimmunity. , 2001, 5, 176-190.		4
156	Novel Vectors for Co-Expression of Two Proteins in <i>E. coli</i> . BioTechniques, 2001, 31, 322-328.	1.8	60
157	Gab2 Is Phosphorylated on Tyrosine upon Interleukin-2/Interleukin-15 Stimulation in Mycosis-fungoides-Derived Tumor T Cells and Associates Inducibly with SHP-2 and Stat5a. Experimental and Clinical Immunogenetics, 2001, 18, 86-95.	1.2	13
158	The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nature Cell Biology, 2001, 3, 1124-1128.	10.3	366
159	Identification of a CD28 Response Element in the CD40 Ligand Promoter. Journal of Immunology, 2001, 166, 2437-2443.	0.8	28
160	Release from Tonic Inhibition of T Cell Activation through Transient Displacement of C-terminal Src Kinase (Csk) from Lipid Rafts. Journal of Biological Chemistry, 2001, 276, 29313-29318.	3.4	146
161	Activation of the Cooh-Terminal Src Kinase (Csk) by Camp-Dependent Protein Kinase Inhibits Signaling through the T Cell Receptor. Journal of Experimental Medicine, 2001, 193, 497-508.	8.5	299
162	Inhibitory Role for Dual Specificity Phosphatase VHR in T Cell Antigen Receptor and CD28-induced Erk and Jnk Activation. Journal of Biological Chemistry, 2001, 276, 4766-4771.	3.4	140

#	Article	IF	CITATIONS
163	Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. European Journal of Immunology, 2000, 30, 1318-1325.	2.9	69
164	Subcellular localization of intracellular protein tyrosine phosphatases in T cells. European Journal of Immunology, 2000, 30, 2412-2421.	2.9	113
165	The Tumor Suppressor PTEN Regulates T Cell Survival and Antigen Receptor Signaling by Acting as a Phosphatidylinositol 3-Phosphatase. Journal of Immunology, 2000, 164, 1934-1939.	0.8	69
166	Extracellular signals and scores of phosphatases: All roads lead to MAP kinase. Seminars in Immunology, 2000, 12, 387-396.	5.6	116
167	Inhibition of T Cell Signaling by Mitogen-activated Protein Kinase-targeted Hematopoietic Tyrosine Phosphatase (HePTP). Journal of Biological Chemistry, 1999, 274, 11693-11700.	3.4	129
168	Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nature Cell Biology, 1999, 1, 305-310.	10.3	205
169	The Next Wave. Cellular Signalling, 1999, 11, 637-650.	3.6	41
170	A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. FEBS Journal, 1999, 262, 277-282.	0.2	20
171	Dephosphorylation of ZAP-70 and inhibition of T cell activation by activated SHP1. European Journal of Immunology, 1999, 29, 2539-2550.	2.9	79
172	Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. European Journal of Immunology, 1999, 29, 3845-3854.	2.9	176
173	Jun Kinase Phosphorylates and Regulates the DNA Binding Activity of an Octamer Binding Protein, T-Cell Factor β1. Molecular and Cellular Biology, 1999, 19, 2021-2031.	2.3	18
174	Phosphorylation of the Grb2- and Phosphatidylinositol 3-Kinase p85–binding p36/38 by Syk in Lck-Negative T Cells. Cellular Signalling, 1998, 10, 407-413.	3.6	18
175	Modification of Phosphatidylinositol 3-Kinase SH2 Domain Binding Properties by Abl- or Lck-mediated Tyrosine Phosphorylation at Tyr-688. Journal of Biological Chemistry, 1998, 273, 3994-4000.	3.4	44
176	Negative Regulation of T Cell Antigen Receptor Signal Transduction by Hematopoietic Tyrosine Phosphatase (HePTP). Journal of Biological Chemistry, 1998, 273, 15340-15344.	3.4	70
177	Temporal Phases in Apoptosis Defined by the Actions of Src Homology 2 Domains, Ceramide, Bcl-2, Interleukin-11² Converting Enzyme Family Proteases, and a Dense Membrane Fraction. Journal of Cell Biology, 1997, 137, 1117-1125.	5.2	37
178	Involvement of Phosphatidylinositol 3-Kinase in NFAT Activation in T Cells. Journal of Biological Chemistry, 1997, 272, 14483-14488.	3.4	55
179	Regulation of the Low Molecular Weight Phosphotyrosine Phosphatase by Phosphorylation at Tyrosines 131 and 132. Journal of Biological Chemistry, 1997, 272, 5371-5374.	3.4	88
180	Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: Tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6764-6769.	7.1	222

#	Article	IF	CITATIONS
181	Bcr – Abl-mediated resistance to apoptosis is independent of PI 3-kinase activity. Cell Death and Differentiation, 1997, 4, 548-554.	11.2	24
182	Reconstitution of T Cell Antigen Receptor-Induced Erk2 Kinase Activation in Lck-Negative JCaM1 Cells by Syk. FEBS Journal, 1997, 245, 84-90.	0.2	43
183	Role of Tyr518 and Tyr519 in the Regulation of Catalytic Activity and Substrate Phosphorylation by Syk Protein-Tyrosine Kinase. FEBS Journal, 1997, 246, 447-451.	0.2	31
184	Functional and Physical Interactions of Syk Family Kinases with the Vav Proto-Oncogene Product. Immunity, 1996, 5, 591-604.	14.3	258
185	Chapter 8 B and T cell signaling at the molecular level. Principles of Medical Biology, 1996, , 137-150.	0.1	0
186	Inhibition of Phosphatidylinositol 3-Kinase Blocks T Cell Antigen Receptor/CD3-Induced Activation of the Mitogen-Activated Kinase Erk2. FEBS Journal, 1996, 235, 828-835.	0.2	63
187	Involvement of Src-homology-2-domain-containing Protein-tyrosine Phosphatase 2 in T Cell Activation. FEBS Journal, 1996, 237, 736-742.	0.2	21
188	Differential and multiple binding of signal transducing molecules to the ITAMs of the TCR-ζ chain. , 1996, 63, 94-103.		42
189	Regulation of the Lck SH2 Domain by Tyrosine Phosphorylation. Journal of Biological Chemistry, 1996, 271, 24880-24884.	3.4	74
190	Identification of the Site in the Syk Protein Tyrosine Kinase That Binds the SH2 Domain of Lck. Journal of Biological Chemistry, 1996, 271, 24294-24299.	3.4	38
191	Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10142-10146.	7.1	146
192	Towards unraveling the complexity of T cell signal transduction. BioEssays, 1995, 17, 967-975.	2.5	38
193	Regulation of the p70zap tyrosine protein kinase in T cells by the CD45 phosphotyrosine phosphatase. European Journal of Immunology, 1995, 25, 942-946.	2.9	69
194	Triggering of human natural killer cells through CD16 induces tyrosine phosphorylation of the p72syk kinase. European Journal of Immunology, 1994, 24, 2491-2496.	2.9	46
195	T cell antigen receptor signaling: Three families of tyrosine kinases and a phosphatase. Immunity, 1994, 1, 351-356.	14.3	90
196	Induction of hyperphosphorylation and activation of the p56lck protein tyrosine kinase by phenylarsine oxide, a phosphotyrosine phosphatase inhibitor. Molecular Immunology, 1994, 31, 1295-1302.	2.2	31
197	p56lck-independent activation and tyrosine phosphorylation of p72syk by T-cell antigen receptor/CD3 stimulation Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5301-5305.	7.1	117
198	Regulation of src family tyrosine kinases in lymphocytes. Trends in Biochemical Sciences, 1993, 18, 215-220.	7.5	139

#	Article	IF	CITATIONS
199	Reduced tyrosine phosphorylation in polyamine-starved cells. Experimental Cell Research, 1992, 202, 370-375.	2.6	15
200	Activation of natural killer cells via the Fcl̂ ³ RIII (CD16) requires initial tyrosine phosphorylation. European Journal of Immunology, 1992, 22, 611-614.	2.9	17
201	Regulation of the p59fyn protein tyrosine kinase by the CD45 phosphotyrosine phosphatase. European Journal of Immunology, 1992, 22, 1173-1178.	2.9	187
202	Phenylarsine oxide augments tyrosine phosphorylation in hematopoietic cells. European Journal of Haematology, 1992, 49, 208-214.	2.2	46
203	GTP-binding membrane proteins in activated and differentiating T cells. Biochemical and Biophysical Research Communications, 1991, 178, 138-144.	2.1	0
204	Molecular Events Mediating T Cell Activation. Advances in Immunology, 1990, 48, 227-360.	2.2	278
205	Phosphotyrosine phosphatases are involved in reversion of T lymphoblastic proliferation. European Journal of Immunology, 1990, 20, 2509-2512.	2.9	28
206	T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation. Science, 1990, 247, 1584-1587.	12.6	480
207	Phorbol 12-myristate 13-acetate (TPA) blocks CD3-mediated Ca2+ mobilization in Jurkat T cells independently of protein kinase C activation. Biochemical and Biophysical Research Communications, 1990, 173, 396-400.	2.1	7
208	Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6302-6306.	7.1	433
209	Contaminant found in antiserum. Cell, 1988, 52, 640.	28.9	2
210	Two Phases of Ornithine Decarboxylase Activation During Lymphocyte Mitogenesis. Advances in Experimental Medicine and Biology, 1988, 250, 301-313.	1.6	10
211	GTP dependence of the transduction of mitogenic signals through the T3 complex in T lymphocytes indicates the involvement of a G-protein. FEBS Letters, 1987, 213, 199-203.	2.8	31
212	Growth signal transduction: Rapid activation of covalently bound ornithine decarboxylase during phosphatidylinositol breakdown. Cell, 1987, 49, 171-176.	28.9	54
213	myo-Inositol reverses Li+-induced inhibition of phosphoinositide turnover and ornithine decarboxylase induction during early lymphocyte activation. European Journal of Immunology, 1986, 16, 859-861.	2.9	33
214	Csk. The AFCS-nature Molecule Pages, 0, , .	0.2	11
215	Autoantibodies against the envelope proteins of endogenous retroviruses K102 and K108 in patients with systemic lupus erythematosus correlate with active disease. Clinical and Experimental Rheumatology, 0, , .	0.8	4