
Keiran S M Smalley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4369337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3041-3046.	3.3	1,206
3	PTEN Loss Confers BRAF Inhibitor Resistance to Melanoma Cells through the Suppression of BIM Expression. Cancer Research, 2011, 71, 2750-2760.	0.4	488
4	Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular Cancer Therapeutics, 2006, 5, 1136-1144.	1.9	410
5	A pivotal role for ERK in the oncogenic behaviour of malignant melanoma?. International Journal of Cancer, 2003, 104, 527-532.	2.3	312
6	Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell & Melanoma Research, 2005, 18, 150-159.	4.0	304
7	Increased cyclin D1 expression can mediate BRAF inhibitor resistance in <i>BRAF</i> V600E–mutated melanomas. Molecular Cancer Therapeutics, 2008, 7, 2876-2883.	1.9	284
8	Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. British Journal of Cancer, 2010, 102, 1724-1730.	2.9	283
9	Rewired ERK-JNK Signaling Pathways in Melanoma. Cancer Cell, 2007, 11, 447-460.	7.7	260
10	LIFE ISN'T FLAT: TAKING CANCER BIOLOGY TO THE NEXT DIMENSION. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 242.	0.7	258
11	Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885. Cancer Research, 2006, 66, 11100-11105.	0.4	257
12	Notch1 Signaling Promotes Primary Melanoma Progression by Activating Mitogen-Activated Protein Kinase/Phosphatidylinositol 3-Kinase-Akt Pathways and Up-regulating N-Cadherin Expression. Cancer Research, 2006, 66, 4182-4190.	0.4	251
13	The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Frontiers in Bioscience - Landmark, 2005, 10, 2986.	3.0	227
14	An Organometallic Protein Kinase Inhibitor Pharmacologically Activates p53 and Induces Apoptosis in Human Melanoma Cells. Cancer Research, 2007, 67, 209-217.	0.4	224
15	The Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase Inhibitor AZD6244 (ARRY-142886) Induces Growth Arrest in Melanoma Cells and Tumor Regression When Combined with Docetaxel. Clinical Cancer Research, 2008, 14, 230-239.	3.2	214
16	CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene, 2009, 28, 85-94.	2.6	195
17	Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma. Nature Reviews Clinical Oncology, 2013, 10, 390-399.	12.5	171
18	Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochemical Pharmacology, 2011, 82, 201-209.	2.0	162

#	Article	IF	CITATIONS
19	The HSP90 Inhibitor XL888 Overcomes BRAF Inhibitor Resistance Mediated through Diverse Mechanisms. Clinical Cancer Research, 2012, 18, 2502-2514.	3.2	145
20	Up-Regulated Expression of Zonula Occludens Protein-1 in Human Melanoma Associates with N-Cadherin and Contributes to Invasion and Adhesion. American Journal of Pathology, 2005, 166, 1541-1554.	1.9	143
21	PLX4032, a potent inhibitor of the Bâ€Raf V600E oncogene, selectively inhibits V600Eâ€positive melanomas. Pigment Cell and Melanoma Research, 2010, 23, 820-827.	1.5	142
22	The involvement of p38 mitogen-activated protein kinase in the α-melanocyte stimulating hormone (α-MSH)-induced melanogenic and anti-proliferative effects in B16 murine melanoma cells. FEBS Letters, 2000, 476, 198-202.	1.3	140
23	The Role of Altered Cell–Cell Communication in Melanoma Progression. Journal of Molecular Histology, 2003, 35, 309-318.	1.0	135
24	Ipilimumab. Nature Reviews Drug Discovery, 2011, 10, 411-412.	21.5	135
25	Fibroblast-mediated drug resistance in cancer. Biochemical Pharmacology, 2013, 85, 1033-1041.	2.0	127
26	NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene, 2013, 32, 3009-3018.	2.6	127
27	Essential role of HDAC6 in the regulation of PD‣1 inÂmelanoma. Molecular Oncology, 2016, 10, 735-750.	2.1	125
28	Dysregulation of Claudin-7 Leads to Loss of E-Cadherin Expression and the Increased Invasion of Esophageal Squamous Cell Carcinoma Cells. American Journal of Pathology, 2007, 170, 709-721.	1.9	123
29	The Essential Role of Fibroblasts in Esophageal Squamous Cell Carcinoma–Induced Angiogenesis. Gastroenterology, 2008, 134, 1981-1993.	0.6	118
30	Understanding Melanoma Signaling Networks as the Basis for Molecular Targeted Therapy. Journal of Investigative Dermatology, 2010, 130, 28-37.	0.3	116
31	Vemurafenib Potently Induces Endoplasmic Reticulum Stress–Mediated Apoptosis in BRAFV600E Melanoma Cells. Science Signaling, 2013, 6, ra7.	1.6	114
32	Defining the Conditions for the Generation of Melanocytes from Human Embryonic Stem Cells. Stem Cells. Stem Cells, 2006, 24, 1668-1677.	1.4	113
33	A brief history of melanoma. Melanoma Research, 2012, 22, 114-122.	0.6	111
34	Targeting histone deacetylase 6 mediates a dual antiâ€melanoma effect: Enhanced antitumor immunity and impaired cell proliferation. Molecular Oncology, 2015, 9, 1447-1457.	2.1	111
35	Fibroblasts Contribute to Melanoma Tumor Growth and Drug Resistance. Molecular Pharmaceutics, 2011, 8, 2039-2049.	2.3	109
36	<i>In vitro</i> three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opinion on Drug Discovery, 2008, 3, 1-10.	2.5	105

#	Article	IF	CITATIONS
37	The treatment of advanced renal cell cancer with high-dose oral thalidomide. British Journal of Cancer, 2001, 85, 953-958.	2.9	102
38	Beyond BRAF: where next for melanoma therapy?. British Journal of Cancer, 2015, 112, 217-226.	2.9	99
39	Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. International Journal of Cancer, 2003, 105, 165-175.	2.3	97
40	Identification of a Novel Subgroup of Melanomas with KIT/Cyclin-Dependent Kinase-4 Overexpression. Cancer Research, 2008, 68, 5743-5752.	0.4	90
41	Ki67 expression levels are a better marker of reduced melanoma growth following MEK inhibitor treatment than phospho-ERK levels. British Journal of Cancer, 2007, 96, 445-449.	2.9	89
42	Similar Biological Activities of Two Isostructural Ruthenium and Osmium Complexes. Chemistry - A European Journal, 2008, 14, 4816-4822.	1.7	85
43	Integrating BRAF/MEK inhibitors into combination therapy for melanoma. British Journal of Cancer, 2009, 100, 431-435.	2.9	82
44	Ligand-Independent EPHA2 Signaling Drives the Adoption of a Targeted Therapy–Mediated Metastatic Melanoma Phenotype. Cancer Discovery, 2015, 5, 264-273.	7.7	82
45	Inhibition of HSP90 by AT13387 Delays the Emergence of Resistance to BRAF Inhibitors and Overcomes Resistance to Dual BRAF and MEK Inhibition in Melanoma Models. Molecular Cancer Therapeutics, 2014, 13, 2793-2804.	1.9	80
46	BRAF Inhibition Generates a Host–Tumor Niche that Mediates Therapeutic Escape. Journal of Investigative Dermatology, 2015, 135, 3115-3124.	0.3	80
47	Targeting Intracellular Signaling Pathways as a Novel Strategy in Melanoma Therapeutics. Annals of the New York Academy of Sciences, 2005, 1059, 16-25.	1.8	78
48	Genetic Subgrouping of Melanoma Reveals New Opportunities for Targeted Therapy: Figure 1 Cancer Research, 2009, 69, 3241-3244.	0.4	78
49	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	1.5	77
50	Improved survival of patients with melanoma brain metastases in the era of targeted BRAF and immune checkpoint therapies. Cancer, 2018, 124, 297-305.	2.0	76
51	Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene, 2017, 36, 1849-1861.	2.6	75
52	HDAC Inhibition Enhances the <i>In Vivo</i> Efficacy of MEK Inhibitor Therapy in Uveal Melanoma. Clinical Cancer Research, 2019, 25, 5686-5701.	3.2	75
53	Melanoma — An Unlikely Poster Child for Personalized Cancer Therapy. New England Journal of Medicine, 2010, 363, 876-878.	13.9	70
54	Targeting Mutant BRAF in Melanoma. Cancer Journal (Sudbury, Mass), 2012, 18, 124-131.	1.0	70

#	Article	IF	CITATIONS
55	Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene, 2016, 35, 1225-1235.	2.6	70
56	Bortezomib induces apoptosis in esophageal squamous cell carcinoma cells through activation of the p38 mitogen-activated protein kinase pathway. Molecular Cancer Therapeutics, 2008, 7, 2866-2875.	1.9	66
57	Leveraging transcriptional dynamics to improve BRAF inhibitor responses in melanoma. EBioMedicine, 2019, 48, 178-190.	2.7	66
58	Single-Cell Characterization of the Immune Microenvironment of Melanoma Brain and Leptomeningeal Metastases. Clinical Cancer Research, 2021, 27, 4109-4125.	3.2	65
59	c-KIT signaling as the driving oncogenic event in sub-groups of melanomas. Histology and Histopathology, 2009, 24, 643-50.	0.5	64
60	Molecular Pathways: Targeting <i>NRAS</i> in Melanoma and Acute Myelogenous Leukemia. Clinical Cancer Research, 2014, 20, 4186-4192.	3.2	61
61	K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nature Communications, 2019, 10, 1870.	5.8	61
62	HDAC8 Regulates a Stress Response Pathway in Melanoma to Mediate Escape from BRAF Inhibitor Therapy. Cancer Research, 2019, 79, 2947-2961.	0.4	59
63	The Anti-Melanoma Activity of Dinaciclib, a Cyclin-Dependent Kinase Inhibitor, Is Dependent on p53 Signaling. PLoS ONE, 2013, 8, e59588.	1.1	58
64	Combined BRAF and HSP90 Inhibition in Patients with Unresectable <i>BRAF</i> V600E-Mutant Melanoma. Clinical Cancer Research, 2018, 24, 5516-5524.	3.2	55
65	Selective evolutionary pressure from the tissue microenvironment drives tumor progression. Seminars in Cancer Biology, 2005, 15, 451-459.	4.3	53
66	Inhibition of Wee1, AKT, and CDK4 Underlies the Efficacy of the HSP90 Inhibitor XL888 in an <i>In Vivo</i> Model of <i>NRAS</i> -Mutant Melanoma. Molecular Cancer Therapeutics, 2013, 12, 901-912.	1.9	52
67	Evaluating Melanoma Drug Response and Therapeutic Escape with Quantitative Proteomics. Molecular and Cellular Proteomics, 2014, 13, 1844-1854.	2.5	52
68	Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity. ACS Chemical Biology, 2008, 3, 305-316.	1.6	51
69	Senescent Fibroblasts in Melanoma Initiation and Progression: An Integrated Theoretical, Experimental, and Clinical Approach. Cancer Research, 2013, 73, 6874-6885.	0.4	51
70	Inhibition of autophagy enhances the effects of the <scp>AKT</scp> inhibitor <scp>MK</scp> â€2206 when combined with paclitaxel and carboplatin in <i><scp>BRAF</scp></i> wildâ€ŧype melanoma. Pigment Cell and Melanoma Research, 2014, 27, 465-478.	1.5	50
71	A database of reaction monitoring mass spectrometry assays for elucidating therapeutic response in cancer. Proteomics - Clinical Applications, 2011, 5, 383-396.	0.8	48
72	Vertical inhibition of the <scp>MAPK</scp> pathway enhances therapeutic responses in <i><scp>NRAS</scp></i> â€mutant melanoma. Pigment Cell and Melanoma Research, 2014, 27, 1154-1158.	1.5	47

#	Article	IF	CITATIONS
73	Farnesyl thiosalicylic acid inhibits the growth of melanoma cells through a combination of cytostatic and pro-apoptotic effects. International Journal of Cancer, 2002, 98, 514-522.	2.3	46
74	Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. International Journal of Cancer, 2016, 139, 1195-1201.	2.3	41
75	Fibroblasts Protect Melanoma Cells from the Cytotoxic Effects of Doxorubicin. Tissue Engineering - Part A, 2014, 20, 2412-2421.	1.6	40
76	ERK Inhibition: A New Front in the War against MAPK Pathway–Driven Cancers?. Cancer Discovery, 2018, 8, 140-142.	7.7	40
77	PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant melanoma. Current Opinion in Investigational Drugs, 2010, 11, 699-706.	2.3	40
78	Proteomic Analysis of CSF from Patients with Leptomeningeal Melanoma Metastases Identifies Signatures Associated with Disease Progression and Therapeutic Resistance. Clinical Cancer Research, 2020, 26, 2163-2175.	3.2	39
79	GSK3β Inhibition Blocks Melanoma Cell/Host Interactions by Downregulating N-Cadherin Expression and Decreasing FAK Phosphorylation. Journal of Investigative Dermatology, 2012, 132, 2818-2827.	0.3	37
80	An Unholy Alliance: Cooperation between BRAF and NF1 in Melanoma Development and BRAF Inhibitor Resistance. Cancer Discovery, 2013, 3, 260-263.	7.7	37
81	Melanoma Biomarkers. Molecular Diagnosis and Therapy, 2009, 13, 283-296.	1.6	36
82	BRAF Inhibitors Amplify the Proapoptotic Activity of MEK Inhibitors by Inducing ER Stress in NRAS-Mutant Melanoma. Clinical Cancer Research, 2017, 23, 6203-6214.	3.2	36
83	Leptomeningeal disease in melanoma patients: An update to treatment, challenges, and future directions. Pigment Cell and Melanoma Research, 2020, 33, 527-541.	1.5	36
84	Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy. Clinical Cancer Research, 2022, 28, 2131-2146.	3.2	36
85	The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochemical Pharmacology, 2016, 122, 1-9.	2.0	34
86	The Novel ATP-Competitive MEK/Aurora Kinase Inhibitor BI-847325 Overcomes Acquired BRAF Inhibitor Resistance through Suppression of Mcl-1 and MEK Expression. Molecular Cancer Therapeutics, 2015, 14, 1354-1364.	1.9	33
87	The Pivotal Role of Phosphoinositide-3 Kinase in the Human Somatostatin sst4 Receptor-Mediated Stimulation of p44/p42 Mitogen-Activated Protein Kinase and Extracellular Acidification. Biochemical and Biophysical Research Communications, 1999, 263, 239-243.	1.0	32
88	Phase i trials in melanoma: A framework to translate preclinical findings to the clinic. European Journal of Cancer, 2016, 67, 213-222.	1.3	32
89	Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. Pharmacological Research, 2017, 119, 242-250.	3.1	32
90	Differentiation of human melanoma cells through p38 MAP kinase is associated with decreased retinoblastoma protein phosphorylation and cell cycle arrest. Melanoma Research, 2002, 12, 187-192.	0.6	31

#	Article	IF	CITATIONS
91	Resistance to Raf inhibition in cancer. Drug Discovery Today: Technologies, 2014, 11, 27-32.	4.0	31
92	Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell and Melanoma Research, 2019, 32, 458-469.	1.5	31
93	Dabrafenib inhibits the growth of <i>BRAFâ€WT</i> cancers through CDK16 and NEK9 inhibition. Molecular Oncology, 2018, 12, 74-88.	2.1	30
94	Translational pathology, genomics and the development of systemic therapies for acral melanoma. Seminars in Cancer Biology, 2020, 61, 149-157.	4.3	30
95	Conjunctival Melanomas Harbor BRAF and NRAS Mutations—Letter. Clinical Cancer Research, 2013, 19, 6329-6330.	3.2	28
96	The Current State of Targeted Therapy in Melanoma: This Time It's Personal. Seminars in Oncology, 2012, 39, 204-214.	0.8	27
97	Differential agonist activity of somatostatin and L-362855 at human recombinant sst4 receptors. British Journal of Pharmacology, 1998, 125, 833-841.	2.7	25
98	Melanoma of the eyelid and periocular skin: Histopathologic classification and molecular pathology. Survey of Ophthalmology, 2019, 64, 272-288.	1.7	25
99	Towards the Targeted Therapy of Melanoma. Mini-Reviews in Medicinal Chemistry, 2006, 6, 387-393.	1.1	23
100	Melanoma genotypes and phenotypes get personal. Laboratory Investigation, 2013, 93, 858-867.	1.7	23
101	Targeted therapy in melanoma. Clinics in Dermatology, 2013, 31, 200-208.	0.8	23
102	Long-term effects of BRAF inhibitors in melanoma treatment: friend or foe?. Expert Opinion on Pharmacotherapy, 2014, 15, 589-592.	0.9	23
103	Combination Therapies for Melanoma: A New Standard of Care?. American Journal of Clinical Dermatology, 2016, 17, 99-105.	3.3	23
104	BRAF inhibition for advanced locoregional BRAF V600E mutant melanoma. Melanoma Research, 2016, 26, 83-87.	0.6	21
105	Why do women with melanoma do better than men?. ELife, 2018, 7, .	2.8	21
106	Ligand internalization and recycling by human recombinant somatostatin type 4 (h sst4) receptors expressed in CHO-K1 cells. British Journal of Pharmacology, 2001, 132, 1102-1110.	2.7	20
107	Targeting the stromal fibroblasts: a novel approach to melanoma therapy. Expert Review of Anticancer Therapy, 2005, 5, 1069-1078.	1.1	20
108	Noncanonical EphA2 Signaling Is a Driver of Tumor-Endothelial Cell Interactions and Metastatic Dissemination in BRAF Inhibitor‒Resistant Melanoma. Journal of Investigative Dermatology, 2021, 141, 840-851.e4.	0.3	19

#	Article	IF	CITATIONS
109	Using quantitative proteomic analysis to understand genotype specific intrinsic drug resistance in melanoma. Oncotarget, 2011, 2, 329-335.	0.8	19
110	Cytotoxicity of the matrix metalloproteinase–activated anthrax lethal toxin is dependent on gelatinase expression and B-RAF status in human melanoma cells. Molecular Cancer Therapeutics, 2008, 7, 1218-1226.	1.9	18
111	Development of a novel chemical class of BRAF inhibitors offers new hope for melanoma treatment. Future Oncology, 2009, 5, 775-778.	1.1	18
112	Ceritinib Enhances the Efficacy of Trametinib in <i>BRAF/NRAS</i> -Wild-Type Melanoma Cell Lines. Molecular Cancer Therapeutics, 2018, 17, 73-83.	1.9	18
113	Identification of <i>BRAF</i> mutations in eruptive melanocytic nevi: new insights into melanomagenesis?. Expert Review of Anticancer Therapy, 2011, 11, 711-714.	1.1	17
114	Decitabine limits escape from MEK inhibition in uveal melanoma. Pigment Cell and Melanoma Research, 2020, 33, 507-514.	1.5	17
115	Activity-Based Protein Profiling Shows Heterogeneous Signaling Adaptations to BRAF Inhibition. Journal of Proteome Research, 2016, 15, 4476-4489.	1.8	16
116	Melanoma biomarkers: current status and utility in diagnosis, prognosis, and response to therapy. Molecular Diagnosis and Therapy, 2009, 13, 283-96.	1.6	16
117	Integrating tumorâ€initiating cells into the paradigm for melanoma targeted therapy. International Journal of Cancer, 2009, 124, 1245-1250.	2.3	15
118	Methods for investigation of targeted kinase inhibitor therapy using chemical proteomics and phosphorylation profiling. Biochemical Pharmacology, 2010, 80, 739-747.	2.0	15
119	Targeted Therapy Given after Anti–PD-1 Leads to Prolonged Responses in Mouse Melanoma Models through Sustained Antitumor Immunity. Cancer Immunology Research, 2021, 9, 554-567.	1.6	15
120	Measurement of Constitutive MAPK and PI3K/AKT Signaling Activity in Human Cancer Cell Lines. Methods in Enzymology, 2010, 484, 549-567.	0.4	14
121	Novel Treatments for Melanoma Brain Metastases. Cancer Control, 2013, 20, 298-306.	0.7	14
122	Amuvatinib has cytotoxic effects against NRAS-mutant melanoma but not BRAF-mutant melanoma. Melanoma Research, 2014, 24, 448-453.	0.6	14
123	ER stress promotes antitumor effects in BRAFi/MEKi resistant human melanoma induced by natural compound 4-nerolidylcathecol (4-NC). Pharmacological Research, 2019, 141, 63-72.	3.1	14
124	<i>In Vivo</i> and <i>in Silico</i> Pharmacokinetics and Biodistribution of a Melanocortin Receptor 1 Targeted Agent in Preclinical Models of Melanoma. Molecular Pharmaceutics, 2013, 10, 3175-3185.	2.3	13
125	Phosphoproteomic analysis of basal and therapyâ€induced adaptive signaling networks in <i>BRAF</i> and <i>NRAS</i> mutant melanoma. Proteomics, 2015, 15, 327-339.	1.3	13
126	A Mutational Survey of Acral Nevi. JAMA Dermatology, 2021, 157, 831-835.	2.0	13

#	Article	IF	CITATIONS
127	Loitering with Intent: New Evidence for the Role of BRAF Mutations in the Proliferation of Melanocytic Lesions. Journal of Investigative Dermatology, 2004, 123, xvi-xvii.	0.3	12
128	Targeted therapy for melanoma: is double hitting a home run?. Nature Reviews Clinical Oncology, 2013, 10, 5-6.	12.5	12
129	The biology and therapeutic management of melanoma brain metastases. Biochemical Pharmacology, 2018, 153, 35-45.	2.0	12
130	Melanoma brain metastases: Biological basis and novel therapeutic strategies. Experimental Dermatology, 2022, 31, 31-42.	1.4	12
131	Preclinical and clinical development of targeted therapy in melanoma: attention to schedule. Pigment Cell and Melanoma Research, 2009, 22, 529-531.	1.5	11
132	Evaluating kinase ATP uptake and tyrosine phosphorylation using multiplexed quantification of chemically labeled and post-translationally modified peptides. Methods, 2015, 81, 41-49.	1.9	11
133	SinCHet: a MATLAB toolbox for single cell heterogeneity analysis in cancer. Bioinformatics, 2017, 33, 2951-2953.	1.8	11
134	Experimental Treatments for Leptomeningeal Metastases from Solid Malignancies. Cancer Control, 2017, 24, 42-46.	0.7	11
135	Two Worlds Collide: Unraveling the Role of the Immune System in BRAF–MEK Inhibitor Responses. Cancer Discovery, 2020, 10, 176-178.	7.7	11
136	The complexity of microenvironment-mediated drug resistance. Genes and Cancer, 2015, 6, 367-368.	0.6	11
137	Targeting mutant BRAF and KIT in metastatic melanoma: ASCO 2009 meeting report. Pigment Cell and Melanoma Research, 2009, 22, 386-387.	1.5	10
138	Tumor heterogeneity and strategies to overcome kinase inhibitor resistance in cancer: lessons from melanoma. Expert Opinion on Investigational Drugs, 2011, 20, 137-140.	1.9	10
139	Making Sense of MEK1 Mutations in Intrinsic and Acquired BRAF Inhibitor Resistance: Figure 1 Cancer Discovery, 2012, 2, 390-392.	7.7	10
140	XL888 Limits Vemurafenib-Induced Proliferative Skin Events by Suppressing Paradoxical MAPK Activation. Journal of Investigative Dermatology, 2015, 135, 2542-2544.	0.3	10
141	Frontiers in pigment cell and melanoma research. Pigment Cell and Melanoma Research, 2018, 31, 728-735.	1.5	10
142	A rare case of leptomeningeal carcinomatosis in a patient with uveal melanoma: case report and review of literature. Melanoma Research, 2016, 26, 481-486.	0.6	9
143	Change or die: Targeting adaptive signaling to kinase inhibition in cancer cells. Biochemical Pharmacology, 2014, 91, 417-425.	2.0	8
144	Feeling energetic? New strategies to prevent metabolic reprogramming in melanoma. Experimental Dermatology, 2015, 24, 657-658.	1.4	8

#	Article	IF	CITATIONS
145	Inhibition of BRAF and MEK in BRAF-mutant melanoma. Lancet, The, 2015, 386, 410-412.	6.3	8
146	Ironing-Out the Details: New Strategies for Combining Ferroptosis Inhibitors with Immunotherapy in Melanoma. Journal of Investigative Dermatology, 2022, 142, 18-20.	0.3	7
147	Improving patient outcomes to targeted therapies in melanoma. Expert Review of Anticancer Therapy, 2016, 16, 633-641.	1.1	6
148	Resistance mechanisms to genetic suppression of mutant NRAS in melanoma. Melanoma Research, 2017, 27, 545-557.	0.6	6
149	Get with the Program! Stemness and Reprogramming in Melanoma Metastasis. Journal of Investigative Dermatology, 2018, 138, 10-13.	0.3	6
150	The Blood Brain Barrier and BRAF inhibitors: Implications for patients with melanoma brain metastases. Pharmacological Research, 2018, 135, 265-267.	3.1	6
151	MEK Inhibition Modulates Cytokine Response to Mediate Therapeutic Efficacy in Lung Cancer. Cancer Research, 2019, 79, 5812-5825.	0.4	6
152	A preclinical model of patient-derived cerebrospinal fluid circulating tumor cells for experimental therapeutics in leptomeningeal disease from melanoma. Neuro-Oncology, 2022, 24, 1673-1686.	0.6	6
153	BRAF-MEK inhibition in melanoma brain metastases: a new hope. Lancet Oncology, The, 2017, 18, 836-837.	5.1	5
154	MEK-ing the Most of It: Strategies to Co-target Gαq and MAPK in Uveal Melanoma. Clinical Cancer Research, 2021, 27, 1217-1219.	3.2	5
155	Taming the Wild-Types: Targeting PAK1 in Melanomas That Lack BRAF Mutations. Journal of the National Cancer Institute, 2013, 105, 591-592.	3.0	4
156	Up Close and Personal: The Challenges of Precision Medicine in Melanoma. Journal of the National Cancer Institute, 2014, 106, djt443-djt443.	3.0	4
157	A Murine Ommaya Xenograft Model to Study Direct-Targeted Therapy of Leptomeningeal Disease. Journal of Visualized Experiments, 2021, , .	0.2	4
158	Inhibition of BRAF and BRAF+MEK drives a metastatic switch in melanoma. Molecular and Cellular Oncology, 2015, 2, e1008291.	0.3	3
159	Introducing a checklist for manuscript submission to Pharmacological Research. Pharmacological Research, 2015, 102, 319-321.	3.1	3
160	Histone deacetylase inhibitors: a promising partner for MEK inhibitors in uveal melanoma?. Melanoma Management, 2019, 6, MMT29.	0.1	3
161	HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma. Cancer Gene Therapy, 2022, 29, 1840-1846.	2.2	3
162	Increased immunity and BRAF inhibition: Yet another argument for combination therapy?. Pharmacological Research, 2016, 113, 719-720.	3.1	2

#	Article	IF	CITATIONS
163	Pharmacological research and cancer: A call to arms. Pharmacological Research, 2019, 146, 104291.	3.1	2
164	Phase I study of vemurafenib and heat shock protein 90 (HSP90) inhibitor XL888 in metastatic BRAF V600 mutant melanoma Journal of Clinical Oncology, 2016, 34, 9544-9544.	0.8	2
165	Is ERK activation a good biomarker for estradiol and tamoxifen effects?. Cancer Biology and Therapy, 2007, 6, 119-120.	1.5	1
166	The future of targeted therapy approaches in melanoma. Expert Opinion on Drug Discovery, 2009, 4, 445-456.	2.5	1
167	Mutant BRAF: A Novel Mediator of Microenvironmental Escape in Melanoma?. Journal of Investigative Dermatology, 2013, 133, 1135-1137.	0.3	1
168	EXTH-39. DETECTION, MOLECULAR PROFILING AND CULTURE OF CSF-CTCs IN LEPTOMENINGEAL DISEASE (LMDz) IN MELANOMA TO IMPROVE DIAGNOSIS AND TREATMENT STRATEGIES. Neuro-Oncology, 2018, 20, vi93-vi93.	0.6	1
169	Abstract 3025: Ligand-independent EphA2 signaling drives an amoeboid phenotype that promotes melanoma brain metastasis development. Cancer Research, 2018, 78, 3025-3025.	0.4	1
170	The Great Escape: Another Way for Melanoma to Leave Physiological Control?. Journal of Investigative Dermatology, 2003, 121, xi-xii.	0.3	0
171	Targeting BRAF/MEK in melanoma: new hope or another false dawn?. Expert Review of Dermatology, 2007, 2, 179-190.	0.3	Ο
172	Somatic genetics and targeted therapies for cutaneous melanoma. Update on Cancer Therapeutics, 2008, 3, 81-87.	0.9	0
173	Introduction to the Biochemical Pharmacology special issue on targeted cancer therapy. Biochemical Pharmacology, 2010, 80, 549.	2.0	Ο
174	Preface. Advances in Pharmacology, 2012, 65, xi-xiii.	1.2	0
175	Overcoming melanoma drug resistance through metabolic targeting?. Pigment Cell and Melanoma Research, 2013, 26, 793-795.	1.5	Ο
176	Where to start with systemic melanoma therapy?. Melanoma Management, 2014, 1, 15-18.	0.1	0
177	Pharmacological research and precision cancer medicine: A call for manuscripts. Pharmacological Research, 2015, 102, 308-309.	3.1	Ο
178	Reply to Improving the survival of patients with American Joint Committee on Cancer stage III and IV melanoma. Cancer, 2018, 124, 2254-2255.	2.0	0
179	Therapeutic Targeting of the Melanoma Stem Cell Population. Translational Medicine Series, 2008, , 83-98.	0.0	0
180	Targeting BRAF Activity as a NovelParadigm for Melanoma Therapy. Translational Medicine Series, 2008, , 67-82.	0.0	0

#	Article	IF	CITATIONS
181	Zonula Occludens Protein-1. , 2011, , 3981-3984.		Ο
182	Melanoma and Other Skin Cancers. , 2012, , 439-468.		0
183	Effect of the BRAF inhibitor LGX818 on endoplasmic reticulum stress and sensitivity of NRAS-mutant melanoma cells to the MEK inhibitor binimetinib Journal of Clinical Oncology, 2014, 32, 9062-9062.	0.8	Ο
184	Zonula Occludens Protein-1. , 2015, , 4892-4895.		0
185	Zonula Occludens Protein-1. , 2015, , 1-5.		0