Kouichi Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368648/publications.pdf Version: 2024-02-01

Кошені Теші

#	Article	IF	CITATIONS
1	Direct digestion of human scalp hair on the substrate used for total reflection X-ray fluorescence analysis. Analytical Sciences, 2022, 38, 821-824.	1.6	6
2	Total reflection X-ray fluorescence analysis with a glass substrate treated with a He atmospheric pressure plasma jet. Journal of Analytical Atomic Spectrometry, 2021, 36, 1873-1878.	3.0	7
3	Improvement of Detection Limits for Particle Contamination by Confocal Configuration in X-Ray Fluorescence Microscope. Analytical Sciences, 2021, 37, 1447-1451.	1.6	3
4	Fundamental research for a new confocal line Xâ€ray spectrometer. X-Ray Spectrometry, 2021, 50, 224-230.	1.4	3
5	Total reflection X-ray fluorescence analysis of aerosol particles with direct dissolution of the collection filter on a substrate. Journal of Analytical Atomic Spectrometry, 2021, 36, 570-575.	3.0	6
6	Depth Elemental Imaging during Corrosion of Hot-Dip Galvanized Steel Sheet by Confocal Micro XRF Analysis. Analytical Sciences, 2020, 36, 55-59.	1.6	3
7	Evaluation of fullâ€field energy dispersive Xâ€ray fluorescence imaging apparatus and super resolution analysis with compressed sensing technique. X-Ray Spectrometry, 2019, 48, 644-650.	1.4	14
8	Multi-Modal Compositional Analysis of Layered Paint Chips of Automobiles by the Combined Application of ATR-FTIR Imaging, Raman Microspectrometry, and SEM/EDX. Molecules, 2019, 24, 1381.	3.8	17
9	<i>In situ</i> Observation of Corrosion Process of Steel Sheet under Stress Load by Confocal Micro X-ray Fluorescence Imaging. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 975-980.	0.4	0
10	Scanning and Full Field X-Ray Fluorescence Imaging with Laboratory X-ray Source. Journal of Surface Analysis (Online), 2019, 26, 116-117.	0.1	0
11	<i>In-situ</i> Observation of the Corrosion Process of Steel Sheets in a Solution by a Confocal Micro XRF Technique. Bunseki Kagaku, 2017, 66, 713-718.	0.2	5
12	TXRF intensity dependence on position of dried residue on sample carrier and TXRF determination of halogen in liquid samples. X-Ray Spectrometry, 2016, 45, 197-201.	1.4	12
13	Visualizing a black cat drawing hidden inside the painting by confocal micro-XRF analysis. Microchemical Journal, 2016, 126, 496-500.	4.5	12
14	Secondary excitation process for quantitative confocal 3D-XRF analysis. Powder Diffraction, 2015, 30, 109-112.	0.2	6
15	Confocal microâ€XRF analysis of light elements with Rh Xâ€ray tube and its application for painted steel sheet. X-Ray Spectrometry, 2015, 44, 186-189.	1.4	15
16	Preliminary experiment of X-ray diffraction imaging. Nuclear Instruments & Methods in Physics Research B, 2015, 355, 272-275.	1.4	2
17	Determination of trace elements in Italian wines by means of total reflection X-ray fluorescence spectroscopy. International Journal of Environmental Analytical Chemistry, 2015, 95, 1208-1218.	3.3	16
18	New developments of X-ray fluorescence imaging techniques in laboratory. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 113, 43-53.	2.9	44

Коиісні Тѕил

#	Article	IF	CITATIONS
19	Underfilm corrosion of steel sheets observed by confocal 3D-XRF technique. Powder Diffraction, 2014, 29, 151-154.	0.2	7
20	Wavelength dispersive X-ray fluorescence imaging using a high-sensitivity imaging sensor. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 83-84, 56-60.	2.9	8
21	Fundamental characteristics of hybrid X-ray focusing optics for micro X-ray fluorescence analysis. Nuclear Instruments & Methods in Physics Research B, 2013, 309, 260-263.	1.4	7
22	Depthâ€selective elemental imaging of microSD card by confocal micro XRF analysis. X-Ray Spectrometry, 2013, 42, 123-127.	1.4	29
23	Development of a highâ€resolution confocal microâ€XRF instrument equipped with a vacuum chamber. X-Ray Spectrometry, 2013, 42, 374-379.	1.4	39
24	Elemental Depth Analysis of Corroded Paint-Coated Steel by Confocal Micro-XRF Method. ISIJ International, 2013, 53, 1953-1957.	1.4	6
25	X-Ray Elemental Imaging in Depth by Combination of FE-SEM-EDS and Glow Discharge Sputtering. ISIJ International, 2013, 53, 1939-1942.	1.4	9
26	SEM Observation of Inclusions in Steel Samples Using Fast Cleaning and Modification of the Surface by Glow Discharge. ISIJ International, 2013, 53, 1936-1938.	1.4	1
27	Development of X-ray 2D dispersive device for WD-XRF imaging spectrometer. Powder Diffraction, 2012, 27, 71-74.	0.2	3
28	X-ray Spectrometry. Analytical Chemistry, 2012, 84, 636-668.	6.5	42
29	Development of a new confocal 3D-XRF instrument with an X-ray tube. Journal of Analytical Atomic Spectrometry, 2011, 26, 305-309.	3.0	41
30	Wavelength Dispersive X-ray Fluorescence Imaging. Analytical Chemistry, 2011, 83, 6389-6394.	6.5	19
31	Enhancement of XRF intensity by using Au-coated glass monocapillary. Powder Diffraction, 2011, 26, 163-167.	0.2	6
32	Depth Elemental Imaging of Forensic Samples by Confocal micro-XRF Method. Analytical Chemistry, 2011, 83, 3477-3483.	6.5	77
33	X-ray fluorescence imaging with polycapillary X-ray optics. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 441-444.	2.9	18
34	Development of a transportable µâ€XRF spectrometer with polycapillary half lens. X-Ray Spectrometry, 2010, 39, 78-82.	1.4	16
35	Sample Surface and Near-surface Analysis by Confocal 3D XRF Spectrometer. Hyomen Kagaku, 2010, 31, 331-336.	0.0	1
36	X-ray Spectrometry. Analytical Chemistry, 2010, 82, 4950-4987.	6.5	18

Коиісні Тѕил

#	Article	IF	CITATIONS
37	Development of laboratory confocal 3D-XRF spectrometer and nondestructive depth profiling. Journal of Analytical Atomic Spectrometry, 2010, 25, 562.	3.0	33
38	Preconcentration of environmental waters by agar for XRF analysis. Powder Diffraction, 2009, 24, 135-139.	0.2	7
39	Fundamental characteristics of polycapillary xâ€ray optics combined with glass conical pinhole for micro xâ€ray fluorescence spectrometry. X-Ray Spectrometry, 2009, 38, 258-262.	1.4	9
40	Nondestructive elemental depth profiling of Japanese lacquerware â€~Tamamushiâ€nuri' by confocal 3Dâ€XRF analysis in comparison with micro GEâ€XRF. X-Ray Spectrometry, 2009, 38, 446-450.	1.4	52
41	Grazing Exit Micro X-ray Fluorescence Analysis of a Hazardous Metal Attached to a Plant Leaf Surface Using an X-ray Absorber Method. Analytical Chemistry, 2009, 81, 3356-3364.	6.5	15
42	Effects of an X-ray absorber in Grazing Exit Micro X-ray Fluorescence Analysis of Arsenic Attached to an aqueous leaf of Cammelia hiemalis. E-Journal of Surface Science and Nanotechnology, 2009, 7, 841-846.	0.4	0
43	Development of a compact XRF probe using a ring-type secondary target. X-Ray Spectrometry, 2008, 37, 503-507.	1.4	6
44	GEâ€MXRF analysis of multilayer films. X-Ray Spectrometry, 2008, 37, 625-628.	1.4	6
45	Improvement of spatial resolution of µâ€XRF by using a thin metal filter. X-Ray Spectrometry, 2008, 37, 642-645.	1.4	13
46	X-ray Spectrometry. Analytical Chemistry, 2008, 80, 4421-4454.	6.5	23
47	X-ray Energy Dependence of the Properties of the Focused Beams Produced by Polycapillary X-ray Lens. Analytical Sciences, 2008, 24, 843-846.	1.6	13
48	Micro and imaging x-ray analysis by using polycapillary x-ray optics. Proceedings of SPIE, 2008, , .	0.8	4
49	Application of Confocal 3D Micro-XRF for Solid/Liquid Interface Analysis. Analytical Sciences, 2008, 24, 99-103.	1.6	32
50	Microstructural Characterization of Electroplated Copper Films on Copper-Alloy Seed Layer. Bunseki Kagaku, 2007, 56, 465-470.	0.2	0
51	Proposal of X-Ray Fluorescence Analysis for Solid-Liquid Interfaces and Monitoring Chemical Plating Processes. Bunseki Kagaku, 2007, 56, 499-504.	0.2	3
52	Development of confocal micro X-ray fluorescence instrument using two X-ray beams. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 549-553.	2.9	50
53	Development of confocal 3D micro-XRF spectrometer with dual CrMo excitation. X-Ray Spectrometry, 2007, 36, 145-149.	1.4	46
54	Time-resolved x-ray fluorescence for monitoring the intake of mineral nutrients in living plants. X-Ray Spectrometry, 2007, 36, 324-327.	1.4	12

Коиісні Тѕил

#	Article	IF	CITATIONS
55	Development of Confocal 3D X-ray Fluorescence Instrument and Its Applications to Micro Depth Profiling. Hyomen Kagaku, 2007, 28, 447-452.	0.0	1
56	3D Elemental Mapping in Laboratory by Confocal 3D X-ray Fluorescence Analytical Instrument. Materia Japan, 2007, 46, 833-833.	0.1	0
57	Theoretical characterization of reflector-assisted TXRF analysis. E-Journal of Surface Science and Nanotechnology, 2006, 4, 579-583.	0.4	0
58	Development of Confocal 3D Micro XRF Spectrometer and Its Application to Rice Grain. Bunseki Kagaku, 2006, 55, 427-432.	0.2	18
59	X-Ray Fluorescence Analysis of Micro-Volume of Sample Inside by Using Needle-Type Collimators. Bunseki Kagaku, 2006, 55, 681-687.	0.2	3
60	Numerical approach for depth profiling with GE-XRF. X-Ray Spectrometry, 2006, 35, 305-311.	1.4	8
61	Micro total reflection x-ray fluorescence (µ-TXRF) analysis. X-Ray Spectrometry, 2006, 35, 375-378.	1.4	9
62	X-ray fluorescence analysis of soft materials using needle-type collimators enabling greater tolerance in analysis depth. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 460-464.	2.9	10
63	Total reflection X-ray fluorescence analysis with chemical microchip. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 389-392.	2.9	7
64	Study of the Sampling Method of Blood Samples for Total-Reflection X-ray Fluorescence. Bunseki Kagaku, 2005, 54, 749-753.	0.2	2
65	Grazing-Exit and Micro X-ray Fluorescence Analyses for Chemical Microchips. Analytical Sciences, 2005, 21, 799-803.	1.6	12
66	Grazing-exit electron probe X-ray microanalysis (GE-EPMA): Fundamental and applications. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1381-1391.	2.9	11
67	Characterization of x-rays emerging from between reflector and sample carrier in reflector-assisted TXRF analysis. X-Ray Spectrometry, 2004, 33, 281-284.	1.4	6
68	X-Ray Detectors. , 2004, , 133-275.		2
69	X-Ray Sources. , 2004, , 13-62.		3
70	X-Ray Optics. , 2004, , 63-131.		6
71	New Computerisation Methods. , 2004, , 435-485.		6
72	Special Configurations. , 2004, , 277-433.		1

Коиісні Тѕијі

#	Article	IF	CITATIONS
73	New Applications. , 2004, , 487-592.		4
74	Feasibility study of three-dimensional XRF spectrometry using μ-X-ray beams under grazing-exit conditions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2003, 58, 2233-2238.	2.9	23
75	Calculation of Electron-Induced X-ray Intensities under Grazing Exit Conditions. E-Journal of Surface Science and Nanotechnology, 2003, 1, 111-115.	0.4	2
76	Micro X-ray fluorescence using a pinhole aperture in quasi-contact mode. Journal of Analytical Atomic Spectrometry, 2002, 17, 1405-1407.	3.0	10
77	Localized thin-film analysis by grazing-exit electron probe microanalysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 897-906.	2.9	6
78	Grazing-exit electron probe X-ray microanalysis of ultra-thin films and single particles with high-angle resolution. Analytica Chimica Acta, 2002, 455, 245-252.	5.4	10
79	Glancing-incidence and glancing-takeoff x-ray fluorescence analysis of Ni-GaAs interface reactions. X-Ray Spectrometry, 2000, 29, 155-160.	1.4	9
80	Comparison of grazing-exit particle-induced X-ray emission with other related methods. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1009-1016.	2.9	9
81	Detection Limits of Grazing-Exit EPMA for Particle Analysis. Mikrochimica Acta, 2000, 132, 357-360.	5.0	11
82	Preliminary experiment of total reflection x-ray fluorescence using two glancing x-ray beams excitation. Review of Scientific Instruments, 1999, 70, 1621-1623.	1.3	5
83	Enhancement of electron-induced X-ray intensity for single particles under grazing-exit conditions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 1243-1251.	2.9	23
84	Elemental X-ray images obtained by grazing-exit electron probe microanalysis (GE-EPMA). Journal of Analytical Atomic Spectrometry, 1999, 14, 1711-1713.	3.0	13
85	Grazing Exit Electron Probe Microanalysis for Surface and Particle Analysis. Analytical Chemistry, 1999, 71, 2497-2501.	6.5	35
86	Grazing-Exit Particle-Induced X-ray Emission Analysis with Extremely Low Background. Analytical Chemistry, 1999, 71, 5033-5036.	6.5	14
87	Development of glancing-incidence and glancing-take-off X-ray fluorescence apparatus for surface and thin-film analyses. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 841-846.	2.9	14
88	Takeoff angleâ€dependent xâ€ray fluorescence of layered materials using a glancing incident xâ€ray beam. Journal of Applied Physics, 1994, 75, 7189-7194.	2.5	46
89	Take-off angle-dependent X-ray fluorescence of thin films at glancing incidence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1993, 48, 1471-1480.	2.9	29