
Shengmei Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An electrochemical method for deborylative selenylation of arylboronic acids under metal- and oxidant-free conditions. Green Chemistry, 2022, 24, 130-135.	4.6	16
2	Nickel-Catalyzed 1,1-Dihydrophosphinylation of Nitriles with Phosphine Oxides. Journal of Organic Chemistry, 2022, 87, 5522-5529.	1.7	3
3	Ag/Cu-Mediated Decarboxylative Cyanation of Arene Carboxylic Acids Using NH4 +/N,N-Dimethylformamide as Combined Cyanide Source. Chinese Journal of Organic Chemistry, 2021, 41, 333.	0.6	2
4	NiCl2 as a Cheap and Efficient Precatalyst for the Coupling of Aryl Fluorosulfonate and Phosphite/Phosphine Oxide. Synlett, 2021, 32, 1453-1456.	1.0	4
5	Electrochemical strategies for <i>N</i> -cyanation of secondary amines and α <i>C</i> -cyanation of tertiary amines under transition metal-free conditions. Green Chemistry, 2021, 23, 9422-9427.	4.6	7
6	Electrochemical selenation of phosphonates and phosphine oxides. Tetrahedron Letters, 2020, 61, 151566.	0.7	13
7	Transition metal-free electrocatalytic halodeborylation of arylboronic acids with metal halides MX (X = I, Br) to synthesize aryl halides. Organic Chemistry Frontiers, 2020, 7, 590-595.	2.3	29
8	Conversions of aryl carboxylic acids into aryl nitriles using multiple types of Cu-mediated decarboxylative cyanation under aerobic conditions. Organic and Biomolecular Chemistry, 2020, 18, 8381-8385.	1.5	8
9	Environmentally sustainable production and application of acyl phosphates. Green Chemistry, 2020, 22, 7343-7347.	4.6	15
10	Selective C–C bond cleavage of amides fused to 8-aminoquinoline controlled by a catalyst and an oxidant. Chemical Communications, 2020, 56, 13820-13823.	2.2	9
11	Potassium Carbonate Promoted Nucleophilic Addition of Alkenes with Phosphites. Synlett, 2020, 31, 1295-1297.	1.0	10
12	An electrochemical method for deborylative seleno/thiocyanation of arylboronic acids under catalyst- and oxidant-free conditions. Green Chemistry, 2020, 22, 1559-1564.	4.6	45
13	Regioselective C3â€Phosphonation of Free Indoles via Transitionâ€Metalâ€Free Radical/Hydrolysis Cascade. European Journal of Organic Chemistry, 2019, 2019, 1808-1814.	1.2	10
14	Dichloromethane as a methylene synthon for regioselective linkage of diverse carboxylic acids: Direct access to methylene diesters under metal-free conditions. Chinese Chemical Letters, 2019, 30, 1173-1177.	4.8	8
15	Pd-Catalyzed Decarboxylative <i>Ortho</i> -Halogenation of Aryl Carboxylic Acids with Sodium Halide NaX Using Carboxyl as a Traceless Directing Group. Organic Letters, 2019, 21, 3003-3007.	2.4	17
16	Fe-Catalyzed Bisphosphorylation of Amino-2-en-1-ones with Trialkyl Phosphites. Synlett, 2019, 30, 1090-1094.	1.0	4
17	Acid and 1, 2â€Dichloroethane Coâ€Promoted Substitution of the Amino Groups in Gramine and its Analogues with Trialkyl Phosphites. ChemistrySelect, 2019, 4, 14111-14113.	0.7	1
18	Copperâ€Catalyzed C2 and C3 Phosphonation of Benzofuran and Benzothiophene with Trialkyl Phosphites. ChemCatChem, 2018, 10, 716-719.	1.8	20

Shengmei Guo

#	Article	IF	CITATIONS
19	Nucleophile-controlled mono- and bis-phosphonation of amino-2-en-1-ones <i>via</i> catalyst-free C(sp ³)–N bond cleavage. Organic Chemistry Frontiers, 2018, 5, 3548-3552.	2.3	10
20	Cu-catalyzed decarboxylative iodination of aryl carboxylic acids with NaI: A practical entry to aryl iodides under aerobic conditions. Tetrahedron Letters, 2018, 59, 4458-4461.	0.7	12
21	Convenient sulfonylation of imidazoles and triazoles using NFSI. Journal of Sulfur Chemistry, 2018, 39, 465-471.	1.0	7
22	Selective Phosphoramidation and Phosphonation of Benzoxazoles via Sequence Control. Organic Letters, 2017, 19, 2242-2245.	2.4	12
23	Metal-free phosphonation of benzoxazoles and benzothiazoles under oxidative conditions. Organic Chemistry Frontiers, 2017, 4, 1781-1784.	2.3	19
24	Rapid, Practical and Efficient Synthesis of Enol Phosphates from <i>β</i> -Keto Esters and Phosphites. Chinese Journal of Organic Chemistry, 2017, 37, 1571.	0.6	3
25	Iodine Catalyzed Kabachnik-Fields Reaction of Trialkyl Phosphites: Facile Access to Benzoxazine Containing Phosphorus. Chinese Journal of Organic Chemistry, 2017, 37, 3220.	0.6	2
26	A Metal-Free Cross-Dehydrogenative Coupling Reaction of Amides to Access N-Alkylazoles. Synlett, 2016, 27, 2705-2708.	1.0	16
27	lodine-Promoted Metal-Free Head-to-Tail Dimerization of Styrenes Affording 1,3-Diarylbut-1-enes. Synlett, 2016, 27, 2815-2818.	1.0	3
28	Copper-catalyzed Phosphorylation of Coumarins with Trialkyl Phosphites. Chemistry Letters, 2016, 45, 825-827.	0.7	8
29	Copper-Mediated Oxidative Functionalization of C(sp ³)–H Bonds with Isoquinolines: Two-Step Synthesis of 5-Oxaprotoberberinones. Journal of Organic Chemistry, 2016, 81, 11162-11167.	1.7	20
30	TBAI–HBr system mediated generation of various thioethers with benzenesulfonyl chlorides in PEG ₄₀₀ . RSC Advances, 2016, 6, 54377-54381.	1.7	56
31	Tetrabutylammonium Iodide Mediated Synthesis of β-Alkoxy Sulfides and Vinyl Sulfones by Using Benzenesulfonyl Chlorides as the Sulfur Sources under Acidic or Alkaline Conditions. Synlett, 2016, 27, 2003-2008.	1.0	11
32	lodine-mediated thiolation of phenol/phenylamine derivatives and sodium arylsulfinates in neat water. RSC Advances, 2015, 5, 108030-108033.	1.7	29
33	lodine-catalyzed C3-formylation of indoles via C–N bond cleavage ofÂtertiary amines under aerobic conditions. Tetrahedron, 2015, 71, 3637-3641.	1.0	18
34	Copper-mediated tandem reaction of β-ketoesters/ketones with tertiary amines for the synthesis of 2,3-dihydrofurans. Organic and Biomolecular Chemistry, 2015, 13, 4426-4429.	1.5	8
35	Metal-Free Csp3–N Bond Cleavage of Amides Using tert-Butyl Hydroperoxide as Oxidant. Synlett, 2015, 26, 543-546.	1.0	10
36	lodine-Catalyzed C–N Cleavage of Tertiary Amines: Synthesis of Methylene-Bridged Bis-1,3-dicarbonyl Compounds. Synthesis, 2014, 46, 2445-2450.	1.2	22

Shengmei Guo

#	Article	IF	CITATIONS
37	Base-Promoted, Mild and Highly Efficient Conversion of Arylboronic Acids into Phenols with tert-Butyl Hydroperoxide. Synlett, 2013, 24, 1712-1714.	1.0	68
38	Palladium atalyzed Selective CH Benzylation towards Functionalized Azoles with a Quaternary Carbon Center. Advanced Synthesis and Catalysis, 2012, 354, 1692-1700.	2.1	18
39	Highly Diastereo- and Enantioselective Tandem Reaction toward Functionalized Pyrrolidines with Multiple Stereocenters. Organic Letters, 2011, 13, 5596-5599.	2.4	38
40	Copper-Catalyzed Oxidative Amination of Benzoxazoles via Câ^'H and Câ^'N Bond Activation: A New Strategy for Using Tertiary Amines as Nitrogen Group Sources. Organic Letters, 2011, 13, 522-525.	2.4	254
41	Lewis Acidâ€Catalyzed CH Functionalization for Synthesis of Isoindolinones and Isoindolines. Advanced Synthesis and Catalysis, 2010, 352, 3195-3200.	2.1	115
42	Diastereo―and Enantioselective Catalytic Tandem Michael Addition/Mannich Reaction: Access to Chiral Isoindolinones and Azetidines with Multiple Stereocenters. Angewandte Chemie - International Edition, 2010, 49, 2728-2731.	7.2	107