Sagadevan Govindasamy Mundree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368378/publications.pdf

Version: 2024-02-01

43 papers

1,975 citations

279487 23 h-index 264894 42 g-index

45 all docs

45 docs citations

45 times ranked

2240 citing authors

#	Article	IF	Citations
1	Stachyose triggers apoptotic like cell death in drought sensitive but not resilient plants. Scientific Reports, 2021, 11, 7099.	1.6	6
2	Removal of heavy metals from water using engineered hydrochar: Kinetics and mechanistic approach. Journal of Water Process Engineering, 2021, 40, 101929.	2.6	38
3	Rapid Accumulation of Proline Enhances Salinity Tolerance in Australian Wild Rice Oryza australiensis Domin. Plants, 2021, 10, 2044.	1.6	34
4	Characterisation of the Pseudomonas savastanoi pv. phaseolicola population found in Eastern Australia associated with halo blight disease in Vigna radiata. Australasian Plant Pathology, 2020, 49, 515-524.	0.5	3
5	Desiccation Tolerance: Avoiding Cellular Damage During Drying and Rehydration. Annual Review of Plant Biology, 2020, 71, 435-460.	8.6	149
6	Centrality of BAGs in Plant PCD, Stress Responses, and Host Defense. Trends in Plant Science, 2020, 25, 1131-1140.	4.3	31
7	Diagnosis and management of halo blight in Australian mungbeans: a review. Crop and Pasture Science, 2019, 70, 195.	0.7	21
8	Nutritional and anti-nutritional seed-quality traits of faba bean (Vicia faba) grown in South Australia. Crop and Pasture Science, 2019, 70, 463.	0.7	13
9	Roots of the Resurrection Plant Tripogon Ioliiformis Survive Desiccation Without the Activation of Autophagy Pathways by Maintaining Energy Reserves. Frontiers in Plant Science, 2019, 10, 459.	1.7	25
10	Investigation of Insect Resistance Components in Wild Pigeonpea Cajanus Scarabaeoides. Proceedings (mdpi), 2019, 36, .	0.2	0
11	Saving for a rainy day: Control of energy needs in resurrection plants. Plant Science, 2018, 271, 62-66.	1.7	18
12	An osmotin from the resurrection plant <i>Tripogon loliiformis</i> (<i><scp>TlOsm</scp></i>) confers tolerance to multiple abiotic stresses in transgenic rice. Physiologia Plantarum, 2018, 162, 13-34.	2.6	26
13	Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production. Biotechnology and Applied Biochemistry, 2018, 65, 138-144.	1.4	18
14	Genome-Wide Investigation of the Role of MicroRNAs in Desiccation Tolerance in the Resurrection Grass Tripogon Ioliiformis. Plants, 2018, 7, 68.	1.6	8
15	Investigation of Baseline Iron Levels in Australian Chickpea and Evaluation of a Transgenic Biofortification Approach. Frontiers in Plant Science, 2018, 9, 788.	1.7	33
16	Characterisation of chickpea cropping systems in Australia for major abiotic production constraints. Field Crops Research, 2017, 204, 120-134.	2.3	26
17	Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways. Energy, 2017, 126, 649-657.	4.5	91
18	Hybrid environmental and economic assessment of four approaches recovering energy from sludge with variant organic contents. Journal of Cleaner Production, 2017, 153, 131-138.	4.6	29

#	Article	IF	CITATIONS
19	Finger on the Pulse: Pumping Iron into Chickpea. Frontiers in Plant Science, 2017, 8, 1755.	1.7	26
20	Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy, 2016, 6, 54.	1.3	177
21	Tripogon loliiformis elicits a rapid physiological and structural response to dehydration for desiccation tolerance. Functional Plant Biology, 2016, 43, 643.	1.1	28
22	Molecular and biochemical characterisation of a novel type II peroxiredoxin (XvPrx2) from the resurrection plant Xerophyta viscosa. Functional Plant Biology, 2016, 43, 669.	1.1	3
23	Biofuels from food processing wastes. Current Opinion in Biotechnology, 2016, 38, 97-105.	3.3	72
24	Trehalose Accumulation Triggers Autophagy during Plant Desiccation. PLoS Genetics, 2015, 11, e1005705.	1.5	94
25	A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta, 2015, 242, 407-426.	1.6	98
26	Physiological basis of salt stress tolerance in rice expressing the antiapoptotic gene SfIAP. Functional Plant Biology, 2014, 41, 1168.	1.1	24
27	Protection mechanisms in the resurrection plant Xerophyta viscosa: cloning, expression, characterisation and role of XvINO1, a gene coding for a myo-inositol 1-phosphate synthase. Functional Plant Biology, 2008, 35, 26.	1.1	12
28	Corrigendum to: Protection mechanisms in the resurrection plant Xerophyta viscosa: cloning, expression, characterisation and role of XvINO1, a gene coding for a myo-inositol 1-phosphate synthase. Functional Plant Biology, 2008, 35, 171.	1.1	2
29	Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. Journal of Experimental Botany, 2007, 58, 1947-1956.	2.4	223
30	Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant, Cell and Environment, 2007, 30, 435-446.	2.8	105
31	Photochemical and Antioxidant Responses in the Leaves of Xerophyta viscosa Baker and Digitaria sanguinalis L. under Water Deficit. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 435-443.	0.6	25
32	Molecular Cloning, Bacterial Overexpression and Characterization of L-myo- inositol 1- Phosphate Synthase from a Monocotyledonous Resurrection Plant, Xerophyta viscosa Baker. Journal of Plant Biochemistry and Biotechnology, 2005, 14, 95-99.	0.9	9
33	Antioxidant response and photosynthetic characteristics of Xerophyta viscosa Baker and Digitaria sanguinalis L. leaves induced by high light. Israel Journal of Plant Sciences, 2004, 52, 177-187.	0.3	4
34	Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: does a TIP 3;1 and/or compartmentalization of subcellular components and metabolites play a role?. Journal of Experimental Botany, 2004, 55, 651-661.	2.4	59
35	Isolation and characterisation of a novel dehydration-induced Grp94 homologue from the resurrection plant Xerophyta viscosa. South African Journal of Botany, 2004, 70, 741-750.	1.2	7
36	XvVHA-c''1- a novel stress-responsive V-ATPase subunit c'' homologue isolated from the resurrection plant Xerophyta viscosa. Physiologia Plantarum, 2004, 122, 54-61.	2.6	15

#	Article	IF	CITATIONS
37	Molecular characterization of XVSAP1, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baker1. Journal of Experimental Botany, 2003, 54, 191-201.	2.4	55
38	An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and -sensitive tissues. Functional Plant Biology, 2003, 30, 281.	1.1	35
39	A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta, 2002, 215, 716-726.	1.6	100
40	Title is missing!. Plant Growth Regulation, 2001, 35, 121-129.	1.8	42
41	Title is missing!. Plant Growth Regulation, 2001, 35, 137-145.	1.8	31
42	An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. Planta, 2000, 211, 693-700.	1.6	98
43	Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth. Oecologia, 1993, 93, 360-366.	0.9	60