Oleg Gromov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368342/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supercritical fluids in chemistry. Russian Chemical Reviews, 2020, 89, 1337-1427.	6.5	62
2	New copper(II) thiohydantoin complexes: Synthesis, characterization, and assessment of their interaction with bovine serum albumin and DNA. Journal of Inorganic Biochemistry, 2017, 175, 190-197.	3.5	23
3	EPR, the X-ray Structure and DFT Calculations of the Nitroxide Biradical with One Acetylene Group in the Bridge. Applied Magnetic Resonance, 2014, 45, 981-992.	1.2	19
4	Cu(II)-Alkyl Chlorocomplexes: Stable Compounds or Transients? DFT Prediction of their Structure and EPR Parameters. Journal of Physical Chemistry A, 2011, 115, 8147-8154.	2.5	11
5	UV–Vis Identification and DFT-Assisted Prediction of Structures of Cu(II)–Alkyl Chlorocomplexes. Journal of Physical Chemistry A, 2012, 116, 11581-11585.	2.5	11
6	Spin Density Distribution in a Nitroxide Biradical Containing 13C-Enriched Acetylene Groups in the Bridge: DFT Calculations and EPR Investigation. Applied Magnetic Resonance, 2016, 47, 1057-1067.	1.2	10
7	Peculiarities of Spin Exchange in Nitroxide Biradicals Containing Two para-Phenylene Groups in the Bridge: EPR Investigation and DFT Calculations. Applied Magnetic Resonance, 2016, 47, 1283-1293.	1.2	9
8	Performance of DFT methods in the calculation of isotropic and dipolar contributions to 14N hyperfine coupling constants of nitroxide radicals. Journal of Molecular Modeling, 2019, 25, 93.	1.8	9
9	The Structure and EPR Behavior of Nitroxide Biradical Containing Phosphorus Atom in the Bridge. Applied Magnetic Resonance, 2015, 46, 1429-1442.	1.2	6
10	EPR Study of TiO2 (Rutile) Doped with Vanadium. Applied Magnetic Resonance, 2016, 47, 479-485.	1.2	6
11	Thioureido Cymantrene Derivatives: Synthesis and Photochromic Properties. Organometallics, 2019, 38, 2288-2297.	2.3	6
12	Photoinduced deprotonation of cyclopentene oxide radical cations in low-temperature Freon matrices. Mendeleev Communications, 2020, 30, 67-69.	1.6	6
13	Solute Diffusion into Polymer Swollen by Supercritical CO2 by High-Pressure Electron Paramagnetic Resonance Spectroscopy and Chromatography. Polymers, 2021, 13, 3059.	4.5	6
14	Impregnation of Polycarbonate by Paramagnetic Probe 2,2,6,6-Tetramethyl-4-Hydroxy-Piperidine-1-Oxyl (TEMPOL) in Supercritical CO2. Applied Magnetic Resonance, 2018, 49, 403-413.	1.2	5
15	Tailored Nitroxide Radicals and Biradical Containing 13C Enriched Acetylene Groups: ENDOR and DFT Investigation. Applied Magnetic Resonance, 2018, 49, 137-149.	1.2	5
16	Specific Features of the Intramolecular Spin Exchange in a Novel Nitroxide Triradical. Russian Journal of Physical Chemistry B, 2019, 13, 739-743.	1.3	5
17	Impregnation of polymers with 2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl (TEMPONE) paramagnetic probe in sub- and supercritical CO2. Russian Journal of Physical Chemistry B, 2016, 10, 1229-1236.	1.3	4
18	The Structure and Internal Dynamics of R6-p-C6H4-R6 Biradical: EPR, X-ray Crystallography and DFT Calculations. Applied Magnetic Resonance, 2019, 50, 425-439.	1.2	4

Oleg Gromov

#	Article	IF	CITATIONS
19	Compounds with the copper(II)-carbon bond: EPR spectroscopy and quantum chemistry. Doklady Physical Chemistry, 2013, 451, 154-156.	0.9	3
20	Cyclic form of the aziridine radical cation in a CF3CCl3 matrix at 77 K. Mendeleev Communications, 2016, 26, 332-334.	1.6	3
21	Photochemistry of cyclohexene oxide radical cations in freonic matrices at 77 K. Mendeleev Communications, 2018, 28, 618-620.	1.6	3
22	Influence of Polarity and Ionic Strength on Intramolecular Spin Exchange in a Short Nitroxide Biradical, Containing Sulphur Atom in the Bridge. Applied Magnetic Resonance, 2018, 49, 1059-1073.	1.2	3
23	Photochemistry of Oxirane-Derived Radical Cations in Freonic Matrices at 77 K. Moscow University Chemistry Bulletin, 2021, 76, 1-13.	0.6	3
24	Performance of the DLPNO-CCSD and recent DFT methods in the calculation of isotropic and dipolar contributions to 14N hyperfine coupling constants of nitroxide radicals. Journal of Molecular Modeling, 2021, 27, 194.	1.8	3
25	Photoisomerization of methylthiirane radical cations in freonic matrices at 77 K. Mendeleev Communications, 2017, 27, 479-481.	1.6	2
26	Formation of luminescent states in <scp>polybenzimidazoleâ€based</scp> films. Journal of Polymer Science, 2020, 58, 2926-2935.	3.8	2
27	Photochemistry of 2,2-Dimethyl- and 2,2,3-Trimethyloxirane Radical Cations in Freon Matrices at 77 K. Moscow University Chemistry Bulletin, 2021, 76, 361-369.	0.6	2
28	Structure and Properties of a Biradical Containing Acetylene and Phenylene Groups in the Bridge. Russian Journal of Physical Chemistry B, 2021, 15, 212-218.	1.3	1
29	Photochemical transformations of quaternary ammonium tetrachlorocuprates on an aerosil surface. Russian Journal of Physical Chemistry B, 2013, 7, 717-720.	1.3	0
30	1,4-dithiane radical cations in the CF3CCl3 matrix: Photoisomerization mechanism. High Energy Chemistry, 2016, 50, 362-367.	0.9	0
31	Quantum chemistry of organocuprates as intermediates of catalytic and photochemical reactions. International Journal of Quantum Chemistry, 2016, 116, 295-300.	2.0	0
32	Influence of solvent electron affinity on paramagnetic defects in hybrid Si/SiOx luminescent nanoparticles. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	0
33	Photochemical transformations of exo-2,3-norbornene oxide radical cations in the CF3CCl3 matrix at 77 K. Mendeleev Communications, 2021, 31, 154-156.	1.6	0
34	Effect of Freon matrices on the intermediates stabilized in X-ray irradiated 1,7-dioxaspiro[5,5]undecane solutions at 77 K. Mendeleev Communications, 2021, 31, 343-346.	1.6	0
35	Effect of Freon matrices on the intermediates stabilized in X-ray irradiated 1,7-dioxaspiro[5,5]undecane solutions at 77 K. Mendeleev Communications, 2021, 31, 343-346.	1.6	0