
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sonochemical Preparation of Shape-Selective ZnO Nanostructures. Crystal Growth and Design, 2008, 8, 265-269.	1.4	229
2	All-graphene strain sensor on soft substrate. Carbon, 2017, 116, 753-759.	5.4	164
3	An artificial neural tactile sensing system. Nature Electronics, 2021, 4, 429-438.	13.1	161
4	Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology, 2005, 16, 1048-1052.	1.3	122
5	Aligned carbon nanotubes for nanoelectronics. Nanotechnology, 2004, 15, S512-S516.	1.3	114
6	A tactile sensor using a conductive graphene-sponge composite. Nanoscale, 2016, 8, 9185-9192.	2.8	97
7	Measurement of resistance and spin-memory loss (spin relaxation) at interfaces using sputtered current perpendicular-to-plane exchange-biased spin valves. Physical Review B, 2000, 62, 1178-1185.	1.1	93
8	A Sonochemical Route to Single-Walled Carbon Nanotubes under Ambient Conditions. Journal of the American Chemical Society, 2004, 126, 15982-15983.	6.6	86
9	Low-Temperature Growth of Single-Walled Carbon Nanotubes by Water Plasma Chemical Vapor Deposition. Journal of the American Chemical Society, 2005, 127, 12498-12499.	6.6	81
10	A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale, 2015, 7, 11652-11659.	2.8	78
11	Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Physical Review B, 2006, 73, .	1.1	74
12	Low-Temperature Growth of Single-Walled Carbon Nanotubes by Plasma Enhanced Chemical Vapor Deposition. Chemistry of Materials, 2005, 17, 5141-5145.	3.2	73
13	A graphene force sensor with pressure-amplifying structure. Carbon, 2014, 78, 601-608.	5.4	60
14	High-Output and Bending-Tolerant Triboelectric Nanogenerator Based on an Interlocked Array of Surface-Functionalized Indium Tin Oxide Nanohelixes. ACS Energy Letters, 2019, 4, 1748-1754.	8.8	48
15	ZnO nanoparticle growth on single-walled carbon nanotubes by atomic layer deposition and a consequent lifetime elongation of nanotube field emission. Applied Physics Letters, 2007, 90, 263104.	1.5	46
16	A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology. Carbon, 2015, 94, 982-987.	5.4	43
17	Adsorption-induced conversion of the carbon nanotube field effect transistor from ambipolar to unipolar behavior. Applied Physics Letters, 2005, 86, 093105.	1.5	41
18	A flexible graphene touch sensor in the general human touch range. Applied Physics Letters, 2014, 105, .	1.5	41

#	Article	IF	CITATIONS
19	A Highly Sensitive Force Sensor with Fast Response Based on Interlocked Arrays of Indium Tin Oxide Nanosprings toward Human Tactile Perception. Advanced Functional Materials, 2018, 28, 1804132.	7.8	36
20	Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes. Applied Physics Letters, 2008, 93, .	1.5	35
21	A tactile sensor using single layer graphene for surface texture recognition. Nanoscale, 2017, 9, 10248-10255.	2.8	35
22	Direct growth of single-walled carbon nanotubes on conducting ZnO films and its field emission properties. Applied Physics Letters, 2006, 89, 113116.	1.5	29
23	Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon, 2021, 181, 169-176.	5.4	27
24	Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition. Nanotechnology, 2009, 20, 295201.	1.3	25
25	Recognition, classification, and prediction of the tactile sense. Nanoscale, 2018, 10, 10545-10553.	2.8	24
26	Growth and characterization of nitrogen-doped single-walled carbon nanotubes by water-plasma chemical vapour deposition. Nanotechnology, 2007, 18, 285601.	1.3	23
27	Reduction of hole doping of chemical vapor deposition grown graphene by photoresist selection and thermal treatment. Nanotechnology, 2016, 27, 505205.	1.3	21
28	Ambient air effects on electrical characteristics of GaP nanowire transistors. Journal of Applied Physics, 2004, 96, 7574-7577.	1.1	20
29	Effects of defects and non-coordinating molecular overlayers on the work function of graphene and energy-level alignment with organic molecules. Carbon, 2012, 50, 851-856.	5.4	20
30	The universal magnetic tunnel junction logic gates representing 16 binary Boolean logic operations. Journal of Applied Physics, 2015, 117, 17D717.	1.1	20
31	Vertically Aligned Carbon-Nanotube Arrays Showing Schottky Behavior at Room Temperature. Small, 2005, 1, 553-559.	5.2	19
32	Anomalous switching in submicrometer magnetic tunnel junction arrays arising from magnetic vortex and domain wall pinning. Journal of Applied Physics, 2004, 96, 1748-1750.	1.1	18
33	Neural coding using telegraphic switching of magnetic tunnel junction. Journal of Applied Physics, 2015, 117, .	1.1	18
34	Formation of polybromine anions and concurrent heavy hole doping in carbon nanotubes. Applied Physics Letters, 2007, 90, 093502.	1.5	17
35	Ecoflex-Passivated Graphene–Yarn Composite for a Highly Conductive and Stretchable Strain Sensor. Journal of Nanoscience and Nanotechnology, 2019, 19, 6690-6695.	0.9	17
36	Technological issues for high-density MRAM development. Journal of Magnetism and Magnetic Materials, 2004, 282, 232-236.	1.0	16

#	Article	IF	CITATIONS
37	Direct photolithographic route to selective growth of single-walled carbon nanotubes using a modified photoresist with ferrocene. Nanotechnology, 2006, 17, 116-123.	1.3	16
38	Magnetization switching and tunneling magnetoresistance effects of synthetic antiferromagnet free layers consisting of amorphous NiFeSiB. Applied Physics Letters, 2005, 87, 082508.	1.5	15
39	A Single Magnetic Tunnel Junction Representing the Basic Logic Functions—NAND, NOR, and IMP. IEEE Electron Device Letters, 2015, 36, 402-404.	2.2	15
40	Metallization of the semiconducting carbon nanotube by encapsulated bromine molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 693-697.	1.3	14
41	Thin film transistors of single-walled carbon nanotubes grown directly on glass substrates. Nanotechnology, 2007, 18, 495203.	1.3	14
42	Noise characteristics of single-walled carbon nanotube network transistors. Nanotechnology, 2008, 19, 285705.	1.3	14
43	Kink-free design of submicrometer MRAM cell. IEEE Transactions on Magnetics, 2003, 39, 2842-2844.	1.2	13
44	Sulfidative Purification of Carbon Nanotubes Integrated in Transistors. Journal of the American Chemical Society, 2005, 127, 8300-8301.	6.6	12
45	Single-walled carbon nanotube growth on glass. Nanotechnology, 2007, 18, 015601.	1.3	11
46	A Flexible Graphene–Polydimethylsiloxane Nanocomposite Force Sensor with Linear Response Across a Wide Pressure Detection Range. Journal of Nanoscience and Nanotechnology, 2019, 19, 1630-1634.	0.9	10
47	An Associative Memory Device Using a Magnetic Tunnel Junction. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	9
48	Fabrication of suspended single-walled carbon nanotubesvia a direct lithographic route. Journal of Materials Chemistry, 2006, 16, 174-178.	6.7	8
49	Enhancement of integrity of graphene transferred by interface energy modulation. Carbon, 2013, 65, 165-174.	5.4	7
50	Charge conversion effects of carbon nanotube network transistors by temperature for Al2O3 gate dielectric formation. Applied Physics Letters, 2010, 97, 032117.	1.5	6
51	Electrical Properties of Silicon Nanowire Fabricated by Patterning and Oxidation Process. IEEE Nanotechnology Magazine, 2012, 11, 565-569.	1.1	6
52	Touch stimulated pulse generation in biomimetic single-layer graphene. Nanoscale, 2016, 8, 3425-3431.	2.8	6
53	Current aspects and future perspectives of high-density MRAM. Physica Status Solidi A, 2004, 201, 1617-1620.	1.7	5
54	Influence of freelayer in magnetic tunnel junction on switching of submicrometer magnetoresistive random access memory arrays. IEEE Transactions on Magnetics, 2005, 41, 883-886.	1.2	5

#	Article	IF	CITATIONS
55	Atomic Layer Deposition of Bi[sub 1â^xâ^y]Ti[sub x]Si[sub y]O[sub z] Thin Films from Alkoxide Precursors and Water. Journal of the Electrochemical Society, 2005, 152, F124.	1.3	5
56	Fabrication and characterization of suspended single-walled carbon nanotubes. Solid State Communications, 2006, 139, 186-190.	0.9	5
57	Effect of charge-transfer complex on the energy level alignment between graphene and organic molecules. Applied Physics Letters, 2012, 100, 183102.	1.5	5
58	A Hierarchical 3D Graphene Nanocomposite Foam for Extremely Tough, Nonâ€Wettable, and Elastic Conductor. Advanced Materials Interfaces, 2020, 7, 2000354.	1.9	5
59	Magnetic tunnel junctions with lowMs free layers. Physica Status Solidi A, 2004, 201, 1640-1643.	1.7	4
60	Transport properties of field effect transistors with randomly networked single walled carbon nanotubes grown by plasma enhanced chemical vapour deposition. Journal Physics D: Applied Physics, 2009, 42, 175106.	1.3	4
61	High-Density Physical Random Number Generator Using Spin Signals in Multidomain Ferromagnetic Layer. Advances in Condensed Matter Physics, 2015, 2015, 1-8.	0.4	4
62	Fabrication of a Flexible Graphene Pressure Sensor. Journal of Nanoscience and Nanotechnology, 2015, 15, 9020-9024.	0.9	4
63	A Highly Efficient Absorbent for Various Organic Solvents Using Hydrophobic Graphene–Sponge Composite. Journal of Nanoscience and Nanotechnology, 2019, 19, 6675-6681.	0.9	4
64	Electrical responses by effects of molecular adsorption on channel and junctions of carbon nanotube field effect transistors. Journal Physics D: Applied Physics, 2008, 41, 102007.	1.3	3
65	Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers. Journal of Nanoscience and Nanotechnology, 2016, 16, 2769-2772.	0.9	3
66	Reconfigurable logic for carry-out computing in 1-bit full adder using a single magnetic tunnel junction. Solid-State Electronics, 2019, 154, 16-19.	0.8	3
67	A Stretchable Graphene Thin-Film Sensor for Detecting All of Lateral and Vertical Strains. Journal of Nanoscience and Nanotechnology, 2019, 19, 1585-1591.	0.9	3
68	Effect of the metal work function on the electrical properties of carbon nanotube network transistors. Journal of the Korean Physical Society, 2012, 60, 1680-1684.	0.3	2
69	The Roles of Wetting Liquid in the Transfer Process of Single Layer Graphene Onto Arbitrary Substrates. Journal of Nanoscience and Nanotechnology, 2013, 13, 7396-7400.	0.9	2
70	Perpendicular Magnetization of Ta/Ru/Ta/Co/Fe/MgO Multilayer. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	2
71	Construction of a Bit Stream Using Telegraphic Switching of a Two-Input Magnetic Tunnel Junction. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	2
72	Reconfigurable Logic Gates with inâ€Plane Magnetic Tunnel Junctions Representing Full Boolean Functions. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800959.	0.8	2

#	Article	IF	CITATIONS
73	Gate dielectric effects on subthreshold transport of carbon nanotube network transistors grown by plasma-enhanced chemical vapor deposition. Journal of the Korean Physical Society, 2010, 56, 598-601.	0.3	2
74	Enhancing the quality of transferred single-layer graphene with poly(4-vinylphenol) interlayer on flexible substrates. Japanese Journal of Applied Physics, 2016, 55, 060305.	0.8	1
75	Formation of Intercalation Path for Oxygen Through Imperfections in Graphene on Metal Substrate: A Density Functional Theory Study. Journal of Nanoscience and Nanotechnology, 2016, 16, 11992-11996.	0.9	1
76	Electric Characteristics of the Carbon Nanotube Network Transistor with Directly Grown ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2016, 16, 2887-2890.	0.9	1
77	Photocurrent Measurements of Carbon Nanotube Networks with Physical Adsorption of Oxygen Molecules. Journal of the Korean Physical Society, 2008, 53, 3343-3347.	0.3	1
78	Remanence analysis of sub-micron MTJ cell with CoFe/NiFe free layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3538-3541.	0.8	0
79	Time-to-breakdown characteristics of magnetic tunnel junctions. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3542-3545.	0.8	0
80	Improved selectivity of synthetic anti-ferromagnetic free Layer in high-density MRAM array. IEEE Transactions on Magnetics, 2005, 41, 2673-2675.	1.2	0
81	Switching characteristics of magnetic tunnel junctions with a synthetic antiferromagnetic free layer. IEEE Transactions on Magnetics, 2005, 41, 2688-2690.	1.2	0
82	Controlling the characteristics of single walled carbon nanotube network transistors by using metal electrodes with different work functions. , 2006, , .		0
83	Synthesis, purification, and integration of carbon nanotube for electronic device application. , 2006, ,		0
84	Random network transistors of carbon nanotubes directly grown on glass substrate. , 2006, , .		0
85	Post Annealing Effect on the Electrical Properties of Top-Gate SWNT Network Transistors. Journal of Nanoscience and Nanotechnology, 2011, 11, 5955-5958.	0.9	0
86	The Geometrical Effect of Single Walled Carbon Nanotube Network Transistors on Low Frequency Noise Characteristics. Journal of Nanoscience and Nanotechnology, 2011, 11, 6080-6083.	0.9	0
87	Improvement in the l–V characteristics of carbon nanotube network transistors using microwave treatment. Journal of the Korean Physical Society, 2012, 61, 1587-1591.	0.3	0
88	Current-driven switching property of MgO-based magnetic tunnel junctions with a CoFeB free layer with in-plane magnetization. Journal of the Korean Physical Society, 2012, 61, 1596-1599.	0.3	0
89	Perpendicular magnetization of CoZr/Pt multilayers. Journal of the Korean Physical Society, 2012, 60, 1690-1694.	0.3	0
90	Interfacial Magnetic Anisotropy of Co ₉₀ Zr ₁₀ on Pt Layer. Journal of Nanoscience and Nanotechnology, 2014, 14, 8270-8274.	0.9	0

#	Article	IF	CITATIONS
91	Perpendicular Magnetic Anisotropy for CoFeBZr/MgO. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	Ο
92	Force Sensors: A Highly Sensitive Force Sensor with Fast Response Based on Interlocked Arrays of Indium Tin Oxide Nanosprings toward Human Tactile Perception (Adv. Funct. Mater. 42/2018). Advanced Functional Materials, 2018, 28, 1870304.	7.8	0