## Yehao Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368266/publications.pdf Version: 2024-02-01



YEHAO DENC

| #  | Article                                                                                                                                                                                         | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias<br>and illumination. Nature Energy, 2022, 7, 65-73.                                       | 19.8 | 158       |
| 2  | Pathways to High Efficiency Perovskite Monolithic Solar Modules. , 2022, 1, .                                                                                                                   |      | 5         |
| 3  | Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy and Environmental Science, 2021, 14, 1563-1572.                           | 15.6 | 55        |
| 4  | Metallic surface doping of metal halide perovskites. Nature Communications, 2021, 12, 7.                                                                                                        | 5.8  | 66        |
| 5  | Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nature<br>Sustainability, 2021, 4, 636-643.                                                          | 11.5 | 111       |
| 6  | Perovskite solar cells with embedded homojunction via nonuniform metal ion doping. Cell Reports<br>Physical Science, 2021, 2, 100415.                                                           | 2.8  | 10        |
| 7  | Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules<br>with improved photostability. Nature Energy, 2021, 6, 633-641.                              | 19.8 | 215       |
| 8  | Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Science Advances, 2021, 7, eabi8249.                                                 | 4.7  | 71        |
| 9  | Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates. Advanced<br>Energy Materials, 2020, 10, 1903108.                                                       | 10.2 | 186       |
| 10 | Identifying the Soft Nature of Defective Perovskite Surface Layer and Its Removal Using a Facile<br>Mechanical Approach. Joule, 2020, 4, 2661-2674.                                             | 11.7 | 81        |
| 11 | Reduced Self-Doping of Perovskites Induced by Short Annealing for Efficient Solar Modules. Joule, 2020, 4, 1949-1960.                                                                           | 11.7 | 72        |
| 12 | Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nature<br>Energy, 2020, 5, 1003-1011.                                                              | 19.8 | 126       |
| 13 | Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays.<br>Nature Photonics, 2020, 14, 612-617.                                                        | 15.6 | 228       |
| 14 | Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nature<br>Communications, 2020, 11, 582.                                                                        | 5.8  | 167       |
| 15 | Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nature Communications, 2019, 10, 4498.                                | 5.8  | 234       |
| 16 | Fast Growth of Thin MAPbI <sub>3</sub> Crystal Wafers on Aqueous Solution Surface for Efficient<br>Lateralâ€6tructure Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807707. | 7.8  | 62        |
| 17 | Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels. International Journal of Extreme Manufacturing, 2019, 1, 022004.              | 6.3  | 50        |
| 18 | Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.  | 8.8  | 111       |

Yehao Deng

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances, 2019, 5, eaav8925.                            | 4.7  | 388       |
| 20 | Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science Advances, 2019, 5, eaax7537.                                            | 4.7  | 312       |
| 21 | Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nature<br>Communications, 2019, 10, 5633.                                                          | 5.8  | 267       |
| 22 | Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar<br>cells. Nature Communications, 2018, 9, 1625.                                         | 5.8  | 314       |
| 23 | Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and<br>Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.                          | 11.1 | 81        |
| 24 | Excess charge-carrier induced instability of hybrid perovskites. Nature Communications, 2018, 9, 4981.                                                                                    | 5.8  | 159       |
| 25 | Large electrostrictive response in lead halide perovskites. Nature Materials, 2018, 17, 1020-1026.                                                                                        | 13.3 | 137       |
| 26 | Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803428. | 11.1 | 296       |
| 27 | Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018, 3, 560-566.                                   | 19.8 | 585       |
| 28 | CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> perovskites: Ferroelasticity revealed. Science<br>Advances, 2017, 3, e1602165.                                                           | 4.7  | 257       |
| 29 | Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11, 315-321.                          | 15.6 | 580       |
| 30 | Matching Charge Extraction Contact for Wideâ€Bandgap Perovskite Solar Cells. Advanced Materials,<br>2017, 29, 1700607.                                                                    | 11.1 | 178       |
| 31 | Composition Engineering in Doctorâ€Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017,<br>7, 1700302.                                                                     | 10.2 | 239       |
| 32 | Suppressed Ion Migration in Low-Dimensional Perovskites. ACS Energy Letters, 2017, 2, 1571-1572.                                                                                          | 8.8  | 404       |
| 33 | Ï€â€Conjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar<br>Cells. Advanced Materials, 2017, 29, 1604545.                                | 11.1 | 543       |
| 34 | Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin<br>films. Energy and Environmental Science, 2017, 10, 516-522.                           | 15.6 | 720       |
| 35 | Lowâ€Noise and Largeâ€Linearâ€Dynamicâ€Range Photodetectors Based on Hybridâ€Perovskite<br>Thinâ€Singleâ€Crystals. Advanced Materials, 2017, 29, 1703209.<br>                             | 11.1 | 281       |
| 36 | Selfâ€Filtered Narrowband Perovskite Photodetectors with Ultrafast and Tuned Spectral Response.<br>Advanced Optical Materials, 2017, 5, 1700672.                                          | 3.6  | 78        |

Yehao Deng

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature<br>Communications, 2017, 8, 1890.                                                                         | 5.8  | 467       |
| 38 | Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.                                                      | 4.7  | 635       |
| 39 | Dopant compensation in alloyed CH3NH3PbBr3â^'xClx perovskite single crystals for gamma-ray spectroscopy. Nature Materials, 2017, 16, 826-833.                                                          | 13.3 | 475       |
| 40 | Airâ€Stable, Efficient Mixedâ€Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Advanced Energy Materials, 2016, 6, 1600372.                                    | 10.2 | 275       |
| 41 | Low Temperature Solutionâ€Processed Sb:SnO <sub>2</sub> Nanocrystals for Efficient Planar<br>Perovskite Solar Cells. ChemSusChem, 2016, 9, 2686-2691.                                                  | 3.6  | 172       |
| 42 | A Selfâ€Powered, Subâ€nanosecondâ€Response Solutionâ€Processed Hybrid Perovskite Photodetector for<br>Timeâ€Resolved Photoluminescenceâ€Lifetime Detection. Advanced Materials, 2016, 28, 10794-10800. | 11.1 | 295       |
| 43 | ls Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?. Energy and<br>Environmental Science, 2016, 9, 3650-3656.                                                   | 15.6 | 239       |
| 44 | Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nature Communications, 2016, 7, 12806.                                      | 5.8  | 350       |
| 45 | Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films.<br>Energy and Environmental Science, 2016, 9, 1752-1759.                                          | 15.6 | 917       |
| 46 | Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.                         | 14.8 | 117       |
| 47 | Lightâ€Induced Selfâ€Poling Effect on Organometal Trihalide Perovskite Solar Cells for Increased Device<br>Efficiency and Stability. Advanced Energy Materials, 2015, 5, 1500721.                      | 10.2 | 214       |
| 48 | Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy and Environmental Science, 2015, 8, 1544-1550.                                  | 15.6 | 606       |
| 49 | Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Materials Horizons, 2015, 2, 578-583.                                                  | 6.4  | 167       |