Robert B Abramovitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology, 2006, 7, 601-611.	16.1	370
2	Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO Journal, 2003, 22, 60-69.	3.5	368
3	Mycobacterium tuberculosis Invasion of Macrophages: Linking Bacterial Gene Expression to Environmental Cues. Cell Host and Microbe, 2007, 2, 352-364.	5.1	344
4	A Bacterial Inhibitor of Host Programmed Cell Death Defenses Is an E3 Ubiquitin Ligase. Science, 2006, 311, 222-226.	6.0	310
5	A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature, 2007, 448, 370-374.	13.7	284
6	Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2275-2280.	3.3	280
7	Novel Inhibitors of Cholesterol Degradation in Mycobacterium tuberculosis Reveal How the Bacterium's Metabolism Is Constrained by the Intracellular Environment. PLoS Pathogens, 2015, 11, e1004679.	2.1	245
8	Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2851-2856.	3.3	206
9	Strategies used by bacterial pathogens to suppress plant defenses. Current Opinion in Plant Biology, 2004, 7, 356-364.	3.5	205
10	<i>aprABC</i> : a <i>Mycobacterium tuberculosis</i> complexâ€specific locus that modulates pHâ€driven adaptation to the macrophage phagosome. Molecular Microbiology, 2011, 80, 678-694.	1.2	176
11	Immune activation of the host cell induces drug tolerance in <i>Mycobacterium tuberculosis</i> both in vitro and in vivo. Journal of Experimental Medicine, 2016, 213, 809-825.	4.2	169
12	Mycobacterium tuberculosis Wears What It Eats. Cell Host and Microbe, 2010, 8, 68-76.	5.1	166
13	Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nature Chemical Biology, 2017, 13, 218-225.	3.9	150
14	Slow growth of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> at acidic <scp>pH</scp> is regulated by <scp><i>phoPR</i></scp> and hostâ€associated carbon sources. Molecular Microbiology, 2014, 94, 56-69.	1.2	144
15	Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell. PLoS Pathogens, 2013, 9, e1003282.	2.1	131
16	Small Molecules That Sabotage Bacterial Virulence. Trends in Pharmacological Sciences, 2017, 38, 339-362.	4.0	111
17	The Carbonic Anhydrase Inhibitor Ethoxzolamide Inhibits the Mycobacterium tuberculosis PhoPR Regulon and Esx-1 Secretion and Attenuates Virulence. Antimicrobial Agents and Chemotherapy, 2015, 59, 4436-4445.	1.4	99
18	The Nâ€ŧerminal region of <i>Pseudomonas</i> type III effector AvrPtoB elicits Ptoâ€dependent immunity	2.8	81

Robert B Abramovitch

#	Article	IF	CITATIONS
19	Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Scientific Reports, 2018, 8, 4168.	1.6	68
20	Diverse AvrPtoB Homologs from Several Pseudomonas syringae Pathovars Elicit Pto-Dependent Resistance and Have Similar Virulence Activities. Applied and Environmental Microbiology, 2006, 72, 702-712.	1.4	64
21	AvrPtoB: A bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiology Letters, 2005, 245, 1-8.	0.7	61
22	Acid Fasting: Modulation of Mycobacterium tuberculosis Metabolism at Acidic pH. Trends in Microbiology, 2019, 27, 942-953.	3.5	50
23	Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at Acidic pH Kills the Bacterium and Potentiates Antibiotics. Cell Chemical Biology, 2017, 24, 993-1004.e4.	2.5	42
24	WhiB6 regulation of ESX-1 gene expression is controlled by a negative feedback loop in <i>Mycobacterium marinum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10772-E10781.	3.3	39
25	Artemisia annua and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. Journal of Ethnopharmacology, 2020, 262, 113191.	2.0	39
26	Inhibiting <i>Mycobacterium tuberculosis</i> DosRST Signaling by Targeting Response Regulator DNA Binding and Sensor Kinase Heme. ACS Chemical Biology, 2020, 15, 52-62.	1.6	38
27	HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	37
28	SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis. BMC Bioinformatics, 2016, 17, 66.	1.2	36
29	Identification of New MmpL3 Inhibitors by Untargeted and Targeted Mutant Screens Defines MmpL3 Domains with Differential Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	33
30	2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Scientific Reports, 2019, 9, 1513.	1.6	23
31	Macrophage Infection Models for Mycobacterium tuberculosis. Methods in Molecular Biology, 2015, 1285, 329-341.	0.4	22
32	Inhibiting DosRST as a new approach to tuberculosis therapy. Future Medicinal Chemistry, 2020, 12, 457-467.	1.1	21
33	EspM Is a Conserved Transcription Factor That Regulates Gene Expression in Response to the ESX-1 System. MBio, 2020, 11, .	1.8	21
34	Polysorbates prevent biofilm formation and pathogenesis of <i>Escherichia coli</i> O104:H4. Biofouling, 2016, 32, 1131-1140.	0.8	20
35	A Nonsense Mutation in Mycobacterium marinum That Is Suppressible by a Novel Mechanism. Infection and Immunity, 2017, 85, .	1.0	20
36	2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability. PLoS ONE, 2017, 12, e0180925.	1.1	20

Robert B Abramovitch

#	Article	IF	CITATIONS
37	The ukb1 gene encodes a putative protein kinase required for bud site selection and pathogenicity in Ustilago maydis. Fungal Genetics and Biology, 2002, 37, 98-108.	0.9	17
38	<i>Mycobacterium tuberculosis</i> Reporter Strains as Tools for Drug Discovery and Development. IUBMB Life, 2018, 70, 818-825.	1.5	17
39	Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in <i>Mycobacterium abscessus</i> . Science Translational Medicine, 2022, 14, eabj3860.	5.8	15
40	A bioluminescent <i>Pseudomonas aeruginosa</i> wound model reveals increased mortality of type 1 diabetic mice to biofilm infection. Journal of Wound Care, 2017, 26, S24-S33.	0.5	14
41	Strategies used by bacterial pathogens to suppress plant defenses. Current Opinion in Plant Biology, 2004, 7, 356-356.	3.5	12
42	Molecular characterization of Mycobacterium bovis infection in cattle and buffalo in Amazon Region, Brazil. Veterinary Medicine and Science, 2020, 6, 133-141.	0.6	11
43	Multiple-stage Precursor Ion Separation and High Resolution Mass Spectrometry toward Structural Characterization of 2,3-Diacyltrehalose Family from Mycobacterium tuberculosis. Separations, 2019, 6, 4.	1.1	7
44	AC2P20 selectively kills <i>Mycobacterium tuberculosis</i> at acidic pH by depleting free thiols. RSC Advances, 2021, 11, 20089-20100.	1.7	3
45	Genetic Diversity and Potential Paths of Transmission of Mycobacterium bovis in the Amazon: The Discovery of M. bovis Lineage Lb1 Circulating in South America. Frontiers in Veterinary Science, 2021, 8, 630989.	0.9	3
46	Macrophage Infection Models for Mycobacterium tuberculosis. Methods in Molecular Biology, 2021, 2314, 167-182.	0.4	2
47	Host–Pathogen Interactions Influencing Mycobacterium tuberculosis Persistence and Drug Tolerance. , 2019, , 217-245.		1
48	Functional Analysis of the Intraphagosomal Environment of the Macrophage: Fluorogenic Reporters and the Transcriptional Responses of Salmonella and Mycobacterium spp , 0, , 249-264.		0
49	Targeting tuberculosis – an interview with Robert Abramovitch. Future Medicinal Chemistry, 0, , .	1.1	0