Hans Lambers

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4367560/hans-lambers-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

587	29,869	86	149
papers	citations	h-index	g-index
630 ext. papers	34,715 ext. citations	5.7 avg, IF	7.48 L-index

#	Paper	IF	Citations
587	The mechanisms and potentially positive effects of seven years of delayed and wetter wet seasons on nitrous oxide fluxes in a tropical monsoon forest. <i>Geoderma</i> , 2022 , 412, 115740	6.7	Ο
586	Soil property determines the ability of rhizobial inoculation to enhance nitrogen fixation and phosphorus acquisition in soybean. <i>Applied Soil Ecology</i> , 2022 , 171, 104346	5	1
585	An integrated belowground trait-based understanding of nitrogen driven plant diversity loss <i>Global Change Biology</i> , 2022 ,	11.4	2
584	Phosphorus Acquisition and Utilization in Plants Annual Review of Plant Biology, 2021,	30.7	14
583	Linking root exudation to belowground economic traits for resource acquisition. <i>New Phytologist</i> , 2021 ,	9.8	5
582	Response to Zhong and Zhou: P-acquisition strategies and total soil C sequestration. <i>Trends in Ecology and Evolution</i> , 2021 ,	10.9	0
581	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. <i>New Phytologist</i> , 2021 , 232, 973-1122	9.8	31
580	Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau. <i>Global Change Biology</i> , 2021 , 27, 6578-0	6 5 54	6
579	Correlations between allocation to foliar phosphorus fractions and maintenance of photosynthetic integrity in six mangrove populations as affected by chilling. <i>New Phytologist</i> , 2021 , 232, 2267-2282	9.8	3
578	Biogeomorphological evolution of rocky hillslopes driven by roots in campos rupestres, Brazil. <i>Geomorphology</i> , 2021 , 395, 107985	4.3	0
577	Phosphorus toxicity, not deficiency, explains the calcifuge habit of phosphorus-efficient Proteaceae. <i>Physiologia Plantarum</i> , 2021 , 172, 1724-1738	4.6	O
576	Traits related to efficient acquisition and use of phosphorus promote diversification in Proteaceae in phosphorus-impoverished landscapes. <i>Plant and Soil</i> , 2021 , 462, 67-88	4.2	8
575	A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development. <i>Ecology Letters</i> , 2021 , 24, 984-995	10	13
574	Lower seed P content does not affect early growth in chickpea, provided starter P fertiliser is supplied. <i>Plant and Soil</i> , 2021 , 463, 113-124	4.2	1
573	How does spatial micro-environmental heterogeneity influence seedling recruitment in ironstone outcrops?. <i>Journal of Vegetation Science</i> , 2021 , 32, e13010	3.1	
572	Changes in soil phosphorus fractions in response to long-term phosphate fertilization under sole cropping and intercropping of maize and faba bean on a calcareous soil. <i>Plant and Soil</i> , 2021 , 463, 589	4.2	1
57 ¹	Incorporating rock in surface covers improves the establishment of native pioneer vegetation on alkaline mine tailings. <i>Science of the Total Environment</i> , 2021 , 768, 145373	10.2	3

(2021-2021)

57°	In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply. <i>Plant and Soil</i> , 2021 , 465, 31-46	4.2	2
569	Calcicole-calcifuge plant strategies limit restoration potential in a regional semi-arid flora. <i>Ecology and Evolution</i> , 2021 , 11, 6941-6961	2.8	4
568	Novel Genes and Genetic Loci Associated With Root Morphological Traits, Phosphorus-Acquisition Efficiency and Phosphorus-Use Efficiency in Chickpea. <i>Frontiers in Plant Science</i> , 2021 , 12, 636973	6.2	4
567	Increase in leaf organic acids to enhance adaptability of dominant plant species in karst habitats. <i>Ecology and Evolution</i> , 2021 , 11, 10277-10289	2.8	1
566	Interactions between below-ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition. <i>Functional Ecology</i> , 2021 , 35, 1603-1619	5.6	3
565	Exceptional nitrogen-resorption efficiency enables Maireana species (Chenopodiaceae) to function as pioneers at a mine-restoration site. <i>Science of the Total Environment</i> , 2021 , 779, 146420	10.2	3
564	Formation of dauciform roots by Japanese native Cyperaceae and their contribution to phosphorus dynamics in soils. <i>Plant and Soil</i> , 2021 , 461, 107-118	4.2	2
563	Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. <i>Plant and Soil</i> , 2021 , 461, 137-150	4.2	13
562	Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. <i>Plant and Soil</i> , 2021 , 461, 5-27	4.2	18
561	Compromised root development constrains the establishment potential of native plants in unamended alkaline post-mining substrates. <i>Plant and Soil</i> , 2021 , 461, 163-179	4.2	10
560	Nitrogen limitation and calcifuge plant strategies constrain the establishment of native vegetation on magnetite mine tailings. <i>Plant and Soil</i> , 2021 , 461, 181-201	4.2	9
559	Xylomelum occidentale (Proteaceae) accesses relatively mobile soil organic phosphorus without releasing carboxylates. <i>Journal of Ecology</i> , 2021 , 109, 246-259	6	12
558	Accumulation of phosphorus and calcium in different cells protects the phosphorus-hyperaccumulator Ptilotus exaltatus from phosphorus toxicity in high-phosphorus soils. <i>Chemosphere</i> , 2021 , 264, 128438	8.4	4
557	Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. <i>Global Change Biology</i> , 2021 , 27, 454-466	11.4	21
556	Processes at the soilfboot interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment. <i>Journal of Ecology</i> , 2021 , 109, 927-938	6	6
555	Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do?. <i>Soil Ecology Letters</i> , 2021 , 3, 73-82	2.7	11
554	Role of roots in adaptation of soil-indifferent Proteaceae to calcareous soils in south-western Australia. <i>Journal of Experimental Botany</i> , 2021 , 72, 1490-1505	7	2
553	A significant increase in rhizosheath carboxylates and greater specific root length in response to terminal drought is associated with greater relative phosphorus acquisition in chickpea. <i>Plant and Soil</i> , 2021 , 460, 51-68	4.2	6

552	Contrasting phosphorus sensitivity of two Australian native monocots adapted to different habitats. <i>Plant and Soil</i> , 2021 , 461, 151-162	4.2	2
551	Addition of nitrogen to canopy versus understorey has different effects on leaf traits of understorey plants in a subtropical evergreen broad-leaved forest. <i>Journal of Ecology</i> , 2021 , 109, 692-70	02	4
550	Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. <i>Plant and Soil</i> , 2021 , 461, 43-61	4.2	23
549	Root positioning and trait shifts in Hibbertia racemosa as dependent on its neighbour's nutrient-acquisition strategy. <i>Plant, Cell and Environment,</i> 2021 , 44, 1257-1267	8.4	4
548	No evidence of regulation in root-mediated iron reduction in two Strategy I cluster-rooted Banksia species (Proteaceae). <i>Plant and Soil</i> , 2021 , 461, 203-218	4.2	1
547	Phosphorus and selenium uptake, root morphology, and carboxylates in the rhizosheath of alfalfa (Medicago sativa) as affected by localised phosphate and selenite supply in a split-root system. <i>Functional Plant Biology</i> , 2021 , 48, 1161-1174	2.7	1
546	Effects of oxytetracycline on plant growth, phosphorus uptake, and carboxylates in the rhizosheath of alfalfa. <i>Plant and Soil</i> , 2021 , 461, 501-515	4.2	1
545	Delayed greening in phosphorus-efficient Hakea prostrata (Proteaceae) is a photoprotective and nutrient-saving strategy. <i>Functional Plant Biology</i> , 2021 , 48, 218-230	2.7	1
544	Ecophysiological Performance of Proteaceae Species From Southern South America Growing on Substrates Derived From Young Volcanic Materials. <i>Frontiers in Plant Science</i> , 2021 , 12, 636056	6.2	2
543	Foliar nutrient allocation patterns in Banksia attenuata and Banksia sessilis differing in growth rate and adaptation to low-phosphorus habitats. <i>Annals of Botany</i> , 2021 , 128, 419-430	4.1	4
542	Rhizosphere 'Trade' Is an Unnecessary Analogy: Response to No [®] <i>Trends in Ecology and Evolution</i> , 2021 , 36, 176-177	10.9	2
541	Faster recovery of soil biodiversity in native species mixture than in Eucalyptus monoculture after 60 years afforestation in tropical degraded coastal terraces. <i>Global Change Biology</i> , 2021 , 27, 5329-5340) ^{11.4}	1
540	Critical phosphorus requirements of Trifolium species: The importance of root morphology and root acclimation in response to phosphorus stress. <i>Physiologia Plantarum</i> , 2021 , 173, 1030-1047	4.6	1
539	Silicon mobilisation by root-released carboxylates. <i>Trends in Plant Science</i> , 2021 , 26, 1116-1125	13.1	7
538	Belowground facilitation and trait matching: two or three to tango?. <i>Trends in Plant Science</i> , 2021 , 26, 1227-1235	13.1	13
537	Soil microbial communities are driven by the declining availability of cations and phosphorus during ecosystem retrogression. <i>Soil Biology and Biochemistry</i> , 2021 , 163, 108430	7.5	O
536	The pervasive use of P O , K O, CaO, MgO and other molecules that do not exist in soil or fertiliser bags. <i>New Phytologist</i> , 2021 , 232, 1901-1903	9.8	0
535	Desiccation tolerance implies costs to productivity but allows survival under extreme drought conditions in Velloziaceae species in campos rupestres. <i>Environmental and Experimental Botany</i> , 2021 , 189, 104556	5.9	О

534	Response of foliar mineral nutrients to long-term nitrogen and phosphorus addition in a tropical forest. <i>Functional Ecology</i> , 2021 , 35, 2329	5.6	1
533	Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences. <i>Biogeochemistry</i> , 2021 , 156, 335	3.8	O
532	Initiating pedogenesis of magnetite tailings using Lupinus angustifolius (narrow-leaf lupin) as an ecological engineer to promote native plant establishment. <i>Science of the Total Environment</i> , 2021 , 788, 147622	10.2	О
531	Effects of elevated CO concentration and nitrogen addition on foliar phosphorus fractions of Mikania micranatha and Chromolaena odorata under low phosphorus availability. <i>Physiologia Plantarum</i> , 2021 , 173, 2068-2080	4.6	О
530	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254	8.2	6
529	Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. <i>Trends in Ecology and Evolution</i> , 2021 , 36, 899-906	10.9	16
528	Soil phosphorus availability affects diazotroph communities during vegetation succession in lowland subtropical forests. <i>Applied Soil Ecology</i> , 2021 , 166, 104009	5	4
527	The relative contribution of indigenous and introduced arbuscular mycorrhizal fungi and rhizobia to plant nutrient acquisition in soybean/maize intercropping in unsterilized soils. <i>Applied Soil Ecology</i> , 2021 , 168, 104124	5	1
526	Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests. <i>Catena</i> , 2021 , 207, 105707	5.8	1
525	Strong phosphorus (P)-zinc (Zn) interactions in a calcareous soil-alfalfa system suggest that rational P fertilization should be considered for Zn biofortification on Zn-deficient soils and phytoremediation of Zn-contaminated soils. <i>Plant and Soil</i> , 2021 , 461, 119-134	4.2	12
524	OCBIL theory examined: reassessing evolution, ecology and conservation in the world ancient, climatically buffered and infertile landscapes. <i>Biological Journal of the Linnean Society</i> , 2021 , 133, 266-2	29 ¹ 6 ⁹	12
523	Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands. <i>Journal of Ecology</i> , 2020 , 108, 1874-1887	6	14
522	Tightening the Phosphorus Cycle through Phosphorus-Efficient Crop Genotypes. <i>Trends in Plant Science</i> , 2020 , 25, 967-975	13.1	38
521	Soybean (Glycine max (L.) Merrill) intercropping with reduced nitrogen input influences rhizosphere phosphorus dynamics and phosphorus acquisition of sugarcane (Saccharum officinarum). <i>Biology and Fertility of Soils</i> , 2020 , 56, 1063-1075	6.1	7
520	Release of tartrate as a major carboxylate by alfalfa (Medicago sativa L.) under phosphorus deficiency and the effect of soil nitrogen supply. <i>Plant and Soil</i> , 2020 , 449, 169-178	4.2	13
519	Silicon Dynamics During 2 Million Years of Soil Development in a Coastal Dune Chronosequence Under a Mediterranean Climate. <i>Ecosystems</i> , 2020 , 23, 1614-1630	3.9	13
518	Vellozioid roots allow for habitat specialization among rock- and soil-dwelling Velloziaceae in campos rupestres. <i>Functional Ecology</i> , 2020 , 34, 442-457	5.6	13
517	Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil. <i>Plant and Soil</i> , 2020 , 448, 587-601	4.2	13

Phosphorus facilitation and covariation of root traits in steppe species. *New Phytologist*, **2020**, 226, 128591&98 30

515 P Ca	ontrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for hosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath arboxylates. <i>Functional Ecology</i> , 2020 , 34, 1311-1324	5.6	13
514 P	mending aeolian sandy soil in the Mu Us Sandy Land of China with Pisha sandstone and increasing hosphorus supply were more effective than increasing water supply for improving plant growth nd phosphorus and nitrogen nutrition of lucerne (Medicago sativa). <i>Crop and Pasture Science</i> , 2020	2.2	O
F13 M	71, 785 Mulling over the mulla mullas: revisiting phosphorus hyperaccumulation in the Australian plant enus Ptilotus (Amaranthaceae). <i>Australian Journal of Botany</i> , 2020 , 68, 63	1.2	3
	rerformance of two Lupinus albus L. cultivars in response to three soil pH levels. <i>Experimental agriculture</i> , 2020 , 56, 321-330	1.7	2
	inking shifts in species composition induced by grazing with root traits for phosphorus acquisition a typical steppe in Inner Mongolia. <i>Science of the Total Environment</i> , 2020 , 712, 136495	10.2	17
	n the beginning, there was only bare regolith E hen some plants arrived and changed the regolith. <i>Journal of Plant Ecology</i> , 2020 , 13, 511-516	1.7	8
	daphic niche characterization of four Proteaceae reveals unique calcicole physiology linked to yper-endemism of Grevillea thelemanniana. <i>New Phytologist</i> , 2020 , 228, 869-883	9.8	5
	owards more sustainable cropping systems: lessons from native Cerrado species. <i>Theoretical and Experimental Plant Physiology</i> , 2020 , 32, 175-194	2.4	6
	urplus Carbon Drives Allocation and Plant-Soil Interactions. <i>Trends in Ecology and Evolution</i> , 2020 , 5, 1110-1118	10.9	52
506 P	lants sustain the terrestrial silicon cycle during ecosystem retrogression. <i>Science</i> , 2020 , 369, 1245-124	833.3	27
	he influence of soil age on ecosystem structure and function across biomes. <i>Nature</i> Communications, 2020 , 11, 4721	17.4	19
	he potential for phosphorus benefits through root placement in the rhizosphere of hosphorus-mobilising neighbours. <i>Oecologia</i> , 2020 , 193, 843-855	2.9	4
	argeting Low-Phytate Soybean Genotypes Without Compromising Desirable hosphorus-Acquisition Traits. <i>Frontiers in Genetics</i> , 2020 , 11, 574547	4.5	2
	xogenous Calcium Alleviates Nocturnal Chilling-Induced Feedback Inhibition of Photosynthesis by mproving Sink Demand in Peanut (). <i>Frontiers in Plant Science</i> , 2020 , 11, 607029	6.2	5
	ffects of pH and bicarbonate on the nutrient status and growth of three Lupinus species. <i>Plant</i> and Soil, 2020 , 447, 9-28	4.2	10
	oot-released organic anions in response to low phosphorus availability: recent progress, hallenges and future perspectives. <i>Plant and Soil</i> , 2020 , 447, 135-156	4.2	69
	oifferences in investment and functioning of cluster roots account for different distributions of anksia attenuata and B. sessilis, with contrasting life history. <i>Plant and Soil</i> , 2020 , 447, 85-98	4.2	10

(2019-2020)

498	Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L <i>Plant and Soil</i> , 2020 , 447, 99-116	4.2	18
497	Leaf Phosphorus Concentration Regulates the Development of Cluster Roots and Exudation of Carboxylates in. <i>Frontiers in Plant Science</i> , 2020 , 11, 610591	6.2	2
496	Floral micromorphology and nectar composition of the early evolutionary lineage Utricularia (subgenus Polypompholyx, Lentibulariaceae). <i>Protoplasma</i> , 2019 , 256, 1531-1543	3.4	5
495	The application potential of coal fly ash for selenium biofortification. <i>Advances in Agronomy</i> , 2019 , 157, 1-54	7.7	7
494	Do cluster roots of red alder play a role in nutrient acquisition from bedrock?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11575-11576	11.5	7
493	Responses of foliar phosphorus fractions to soil age are diverse along a 2IMyr dune chronosequence. <i>New Phytologist</i> , 2019 , 223, 1621-1633	9.8	16
492	Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot. <i>Journal of Ecology</i> , 2019 , 107, 2006-2023	6	19
491	Specialized roots of Velloziaceae weather quartzite rock while mobilizing phosphorus using carboxylates. <i>Functional Ecology</i> , 2019 , 33, 762-773	5.6	23
490	Changes in belowground biodiversity during ecosystem development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6891-6896	11.5	78
489	Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. <i>New Phytologist</i> , 2019 , 223, 882-895	9.8	105
488	Strong host specificity of a root hemi-parasite (Santalum acuminatum) limits its local distribution: beggars can be choosers. <i>Plant and Soil</i> , 2019 , 437, 159-177	4.2	8
487	Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. <i>Plant, Cell and Environment</i> , 2019 , 42, 1987-2002	8.4	4
486	The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. <i>Plant and Soil</i> , 2019 , 434, 65-78	4.2	24
485	Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. <i>Applied Soil Ecology</i> , 2019 , 137, 178-186	5	24
484	Supplementary Calcium Restores Peanut () Growth and Photosynthetic Capacity Under Low Nocturnal Temperature. <i>Frontiers in Plant Science</i> , 2019 , 10, 1637	6.2	13
483	Is pH the key reason why some Lupinus species are sensitive to calcareous soil?. <i>Plant and Soil</i> , 2019 , 434, 185-201	4.2	7
482	Biotic and abiotic plantBoil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development. <i>Journal of Ecology</i> , 2019 , 107, 142-153	6	22
481	Analysing Cell Level Allocation of Calcium and Phosphorus in Leaves of Proteaceae from South-Western Australia. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1080-1081	0.5	

480	Microbiomes of Velloziaceae from phosphorus-impoverished soils of the campos rupestres, a biodiversity hotspot. <i>Scientific Data</i> , 2019 , 6, 140	8.2	3
479	Global ecological predictors of the soil priming effect. <i>Nature Communications</i> , 2019 , 10, 3481	17.4	56
478	Calcium modulates leaf cell-specific phosphorus allocation in Proteaceae from south-western Australia. <i>Journal of Experimental Botany</i> , 2019 , 70, 3995-4009	7	18
477	Phosphorus-acquisition strategies of canola, wheat and barley in soil amended with sewage sludges. <i>Scientific Reports</i> , 2019 , 9, 14878	4.9	23
476	Field benchmarking of the critical external phosphorus requirements of pasture legumes for southern Australia. <i>Crop and Pasture Science</i> , 2019 , 70, 1080	2.2	16
475	Biotic Influences: Symbiotic Associations 2019 , 487-540		
474	Growth and Allocation 2019 , 385-449		1
473	Biotic Influences: Interactions Among Plants 2019 , 615-648		
472	Introduction: History, Assumptions, and Approaches 2019 , 1-10		1
471	Biotic Influences: Carnivory 2019 , 649-664		
470	Role in Ecosystem and Global Processes: Decomposition 2019 , 665-676		
469	Life Cycles: Environmental Influences and Adaptations 2019 , 451-486		1
468	Biotic Influences: Effects of Microbial Pathogens 2019 , 583-595		
467	Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level 2019 , 291-300		
466	Biotic Influences: Parasitic Associations 2019 , 597-613		2
465	Photosynthesis, Respiration, and Long-Distance Transport: Photosynthesis 2019 , 11-114		2
464	Photosynthesis, Respiration, and Long-Distance Transport: Respiration 2019 , 115-172		1
463	Plant Water Relations 2019 , 187-263		7

Plant Energy Budgets: The Plant Energy Balance 2019, 265-278 462 7 461 Mineral Nutrition **2019**, 301-384 Plant Physiological Ecology 2019, 460 46 Floral micromorphology of the bird-pollinated carnivorous plant species Utricularia menziesii R.Br. 6 4.1 459 (Lentibulariaceae). Annals of Botany, 2019, 123, 213-220 Soil types select for plants with matching nutrient-acquisition and -use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. Journal of Ecology, 6 458 33 2019, 107, 1302-1316 Hidden miners I he roles of cover crops and soil microorganisms in phosphorus cycling through 4.2 457 91 agroecosystems. Plant and Soil, 2019, 434, 7-45 Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low 456 5.6 42 soil phosphorus availability. Functional Ecology, 2019, 33, 503-513 How Does Evolution in Phosphorus-Impoverished Landscapes Impact Plant Nitrogen and Sulfur 13.1 29 455 Assimilation?. Trends in Plant Science, 2019, 24, 69-82 Calcium-enhanced phosphorus toxicity in calcifuge and soil-indifferent Proteaceae along the Jurien 9.8 26 454 Bay chronosequence. New Phytologist, 2019, 221, 764-777 Nodulation promotes cluster-root formation in Lupinus albus under low phosphorus conditions. 453 4.2 4 Plant and Soil, 2019, 439, 233-242 Contrasting communities of arbuscule-forming root symbionts change external critical phosphorus 8 452 5 requirements of some annual pasture legumes. Applied Soil Ecology, 2018, 126, 88-97 Sensitivity of different Lupinus species to calcium under a low phosphorus supply. Plant, Cell and 8.4 451 Environment, **2018**, 41, 1512-1523 Molecular mechanisms underpinning phosphorus-use efficiency in rice. Plant, Cell and Environment, 8.4 450 33 2018, 41, 1483-1496 Effects of calcium and its interaction with phosphorus on the nutrient status and growth of three 4.6 449 4 Lupinus species. Physiologia Plantarum, 2018, 163, 386 Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus 448 9.8 34 to their mesophyll. New Phytologist, 2018, 218, 959-973 Phosphorus concentration coordinates a respiratory bypass, synthesis and exudation of citrate, and the expression of high-affinity phosphorus transporters in Solanum lycopersicum. Plant, Cell and 8.4 447 15 Environment, **2018**, 41, 865-875 Phosphorus- and nitrogen-acquisition strategies in two Bossiaea species (Fabaceae) along 446 4.6 14 retrogressive soil chronosequences in south-western Australia. Physiologia Plantarum, 2018, 163, 323 An In Vivo Perspective of the Role(s) of the Alternative Oxidase Pathway. Trends in Plant Science, 13.1 90 2018, 23, 206-219

444	Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. <i>Plant, Cell and Environment</i> , 2018 , 41, 2069-2079	8.4	26
443	The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate. <i>Plant and Soil</i> , 2018 , 424, 389	9- 4 -63	20
442	Differences in nutrient foraging among Trifolium subterraneum cultivars deliver improved P-acquisition efficiency. <i>Plant and Soil</i> , 2018 , 424, 539-554	4.2	22
441	Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. <i>New Phytologist</i> , 2018 , 217, 1420-1427	9.8	89
440	Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorus-use efficiency. <i>Plant, Cell and Environment</i> , 2018 , 41, 605-619	8.4	49
439	Root dynamics and survival in a nutrient-poor and species-rich woodland under a drying climate. <i>Plant and Soil</i> , 2018 , 424, 91-102	4.2	3
438	How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. <i>Plant and Soil</i> , 2018 , 424, 11-33	4.2	100
437	Nutrient resorption from senescing leaves of epiphytes, hemiparasites and their hosts in tropical forests of Sri Lanka. <i>Journal of Plant Ecology</i> , 2018 , 11, 815-826	1.7	3
436	Reassessing protocarnivory [how hungry are triggerplants?. Australian Journal of Botany, 2018, 66, 325	1.2	2
435	Mineral Nutrition of Plants in Australia Arid Zone 2018 , 77-102		
435	Mineral Nutrition of Plants in Australia Arid Zone 2018, 77-102 Intrinsic capacity for nutrient foraging predicts critical external phosphorus requirement of 12 pasture legumes. <i>Crop and Pasture Science</i> , 2018, 69, 174	2.2	15
	Intrinsic capacity for nutrient foraging predicts critical external phosphorus requirement of 12	2.2	15 77
434	Intrinsic capacity for nutrient foraging predicts critical external phosphorus requirement of 12 pasture legumes. <i>Crop and Pasture Science</i> , 2018 , 69, 174 Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice		
434	Intrinsic capacity for nutrient foraging predicts critical external phosphorus requirement of 12 pasture legumes. <i>Crop and Pasture Science</i> , 2018 , 69, 174 Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. <i>Agriculture, Ecosystems and Environment</i> , 2018 , 253, 23-37 High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian	5.7	77
434 433 432	Intrinsic capacity for nutrient foraging predicts critical external phosphorus requirement of 12 pasture legumes. <i>Crop and Pasture Science</i> , 2018 , 69, 174 Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. <i>Agriculture, Ecosystems and Environment</i> , 2018 , 253, 23-37 High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. <i>Plant and Soil</i> , 2018 , 424, 255-271 Metabolic Adaptations of the Non-Mycotrophic Proteaceae to Soils with Low Phosphorus	5.7	77
434 433 432 431	Intrinsic capacity for nutrient foraging predicts critical external phosphorus requirement of 12 pasture legumes. <i>Crop and Pasture Science</i> , 2018 , 69, 174 Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. <i>Agriculture, Ecosystems and Environment</i> , 2018 , 253, 23-37 High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. <i>Plant and Soil</i> , 2018 , 424, 255-271 Metabolic Adaptations of the Non-Mycotrophic Proteaceae to Soils with Low Phosphorus Availability 2018 , 289-335 Arsenic in Rice Soils and Potential Agronomic Mitigation Strategies to Reduce Arsenic	5·7 4·2	77 20
434 433 432 431 430	Intrinsic capacity for nutrient foraging predicts critical external phosphorus requirement of 12 pasture legumes. <i>Crop and Pasture Science</i> , 2018 , 69, 174 Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. <i>Agriculture, Ecosystems and Environment</i> , 2018 , 253, 23-37 High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. <i>Plant and Soil</i> , 2018 , 424, 255-271 Metabolic Adaptations of the Non-Mycotrophic Proteaceae to Soils with Low Phosphorus Availability 2018 , 289-335 Arsenic in Rice Soils and Potential Agronomic Mitigation Strategies to Reduce Arsenic Bioavailability: A Review. <i>Pedosphere</i> , 2018 , 28, 363-382	5·7 4·2	77 20 1 28

426	SoilPlantAtmosphere Interactions. Developments in Soil Science, 2018, 29-60	1.3	3
425	Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. <i>Environmental Research Letters</i> , 2018 , 13, 125006	6.2	21
424	Phosphorus acquisition and utilisation in crop legumes under global change. <i>Current Opinion in Plant Biology</i> , 2018 , 45, 248-254	9.9	32
423	The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. <i>New Phytologist</i> , 2018 , 219, 518-529	9.8	79
422	Root morphology acclimation to phosphorus supply by six cultivars of Trifolium subterraneum L. <i>Plant and Soil</i> , 2017 , 412, 21-34	4.2	12
421	Variation in root traits associated with nutrient foraging among temperate pasture legumes and grasses. <i>Grass and Forage Science</i> , 2017 , 72, 93-103	2.3	33
420	Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation. <i>Plant and Soil</i> , 2017 , 416, 97-106	4.2	22
419	Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. <i>Journal of Ecology</i> , 2017 , 105, 1246-1255	6	41
418	Plant Functional Traits: Soil and Ecosystem Services. <i>Trends in Plant Science</i> , 2017 , 22, 385-394	13.1	203
417	Plants in constrained canopy micro-swards compensate for decreased root biomass and soil exploration with increased amounts of rhizosphere carboxylates. <i>Functional Plant Biology</i> , 2017 , 44, 557	2 ⁻² 562	7
416	Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. <i>Plant and Soil</i> , 2017 , 416, 565-584	4.2	27
415	Pronounced surface stratification of soil phosphorus, potassium and sulfur under pastures upstream of a eutrophic wetland and estuarine system. <i>Soil Research</i> , 2017 , 55, 657	1.8	4
414	Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability. <i>Oecologia</i> , 2017 , 185, 387-400	2.9	24
413	Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings. <i>Science of the Total Environment</i> , 2017 , 607-608, 168-175	10.2	31
412	Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat. <i>New Phytologist</i> , 2017 , 215, 1068-1079	9.8	10
411	Incorporation of dolomite reduces iron toxicity, enhances growth and yield, and improves phosphorus and potassium nutrition in lowland rice (Oryza sativa L). <i>Plant and Soil</i> , 2017 , 410, 299-312	4.2	20
410	Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. <i>Journal of Ecology</i> , 2017 , 105, 549-557	6	37
409	Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass). <i>Plant and Soil</i> , 2017 , 412, 7-19	4.2	11

408	Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply. <i>Plant and Soil</i> , 2017 , 410, 499-507	4.2	15
407	Cluster-root formation and carboxylate release in Euplassa cantareirae (Proteaceae) from a neotropical biodiversity hotspot. <i>Plant and Soil</i> , 2016 , 403, 267-275	4.2	12
406	Differential growth response of Rytidosperma species (wallaby grass) to phosphorus application and its implications for grassland management. <i>Grass and Forage Science</i> , 2016 , 71, 245-258	2.3	5
405	Tight control of nitrate acquisition in a plant species that evolved in an extremely phosphorus-impoverished environment. <i>Plant, Cell and Environment</i> , 2016 , 39, 2754-2761	8.4	17
404	Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species. <i>Functional Plant Biology</i> , 2016 , 43, 815-826	2.7	41
403	Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 6496-501	11.5	160
402	Rhizosphere carboxylates and morphological root traits in pasture legumes and grasses. <i>Plant and Soil</i> , 2016 , 402, 77-89	4.2	31
401	Growth and root dry matter allocation by pasture legumes and a grass with contrasting external critical phosphorus requirements. <i>Plant and Soil</i> , 2016 , 407, 67-79	4.2	33
400	Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. <i>Plant and Soil</i> , 2016 , 403, 129-152	4.2	321
399	High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum). <i>Applied Soil Ecology</i> , 2016 , 98, 221-232	5	21
398	Mycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogression. <i>Soil Biology and Biochemistry</i> , 2016 , 92, 119-132	7.5	37
397	Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. <i>Journal of Ecology</i> , 2016 , 104, 792-805	6	59
396	Genetic delineation of local provenance defines seed collection zones along a climate gradient. <i>AoB PLANTS</i> , 2016 , 8,	2.9	5
395	Phosphorus-utilisation efficiency and leaf-morphology traits of Rytidosperma species (wallaby grasses) that differ in their growth response to phosphorus fertilisation. <i>Australian Journal of Botany</i> , 2016 , 64, 65	1.2	5
394	Shifts in symbiotic associations in plants capable of forming multiple root symbioses across a long-term soil chronosequence. <i>Ecology and Evolution</i> , 2016 , 6, 2368-77	2.8	24
393	Ecophysiology of Campos Rupestres Plants 2016 , 227-272		18
392	Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequence. <i>Molecular Ecology</i> , 2016 , 25, 4919-29	5.7	31
391	Accumulation and precipitation of magnesium, calcium, and sulfur in two Acacia (Leguminosae; Mimosoideae) species grown in different substrates proposed for mine-site rehabilitation. American Journal of Botany 2015, 102, 290-301	2.7	8

(2015-2015)

390	Cluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phosphorus lability in rhizosphere soil. <i>Plant and Soil</i> , 2015 , 395, 189-200	4.2	16
389	Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite. <i>Journal of Experimental Botany</i> , 2015 , 66, 2501-14	7	49
388	Advances and Perspectives to Improve the Phosphorus Availability in Cropping Systems for Agroecological Phosphorus Management. <i>Advances in Agronomy</i> , 2015 , 134, 51-79	7.7	46
387	Metabolomics of plant phosphorus-starvation response 2015 , 215-236		
386	Membrane remodelling in phosphorus-deficient plants 2015 , 237-263		11
385	The Role of Intracellular and Secreted Purple Acid Phosphatases in Plant Phosphorus Scavenging and Recycling 2015 , 265-287		14
384	Metabolic Adaptations of the Non-Mycotrophic Proteaceae to Soils With Low Phosphorus Availability 2015 , 289-335		25
383	Algae in a phosphorus-limited landscape 2015 , 337-374		3
382	Impact of roots, microorganisms and microfauna on the fate of soil phosphorus in the rhizosphere 2015 , 375-407		13
381	Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems 2015, 409-439		28
380	Phosphorus: Back to the Roots 2015 , 1-22		21
379	Sensing, signaLling, and CONTROL of phosphate starvation in plants: molecular players and applications 2015 , 23-63		7
378	Dmics Approaches Towards Understanding Plant Phosphorus Acquisition and Use 2015, 65-97		6
377	The Role of Post-Translational Enzyme Modifications in the Metabolic Adaptations of Phosphorus-Deprived Plants 2015 , 99-123		3
376	Phosphate Transporters 2015 , 125-158		10
375	Molecular Components that Drive Phosphorus-Remobilisation During Leaf Senescence 2015 , 159-186		6
374	Interactions between Nitrogen and Phosphorus metabolism 2015 , 187-214		4
373	Plant adaptations to severely phosphorus-impoverished soils. <i>Current Opinion in Plant Biology</i> , 2015 , 25, 23-31	9.9	116

372	Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. <i>Nature Plants</i> , 2015 , 1,	11.5	139
371	Drought resistance and recovery in mature Bituminaria bituminosa var. albomarginata. <i>Annals of Applied Biology</i> , 2015 , 166, 154-169	2.6	24
370	Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. <i>New Phytologist</i> , 2015 , 206, 507-21	9.8	141
369	Mechanisms for tolerance of very high tissue phosphorus concentrations in Ptilotus polystachyus. <i>Plant, Cell and Environment</i> , 2015 , 38, 790-9	8.4	12
368	Interactions among cluster-root investment, leaf phosphorus concentration, and relative growth rate in two Lupinus species. <i>American Journal of Botany</i> , 2015 , 102, 1529-37	2.7	2
367	Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. <i>New Phytologist</i> , 2015 , 205, 1183-1194	9.8	118
366	Leaf manganese accumulation and phosphorus-acquisition efficiency. <i>Trends in Plant Science</i> , 2015 , 20, 83-90	13.1	166
365	Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. <i>Plant, Cell and Environment</i> , 2015 , 38, 1142-56	8.4	59
364	Phosphorus nutrition in Proteaceae and beyond. <i>Nature Plants</i> , 2015 , 1, 15109	11.5	85
363	A Multiscale Approach to Understanding Calcium Toxicity in Australian Proteaceae. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1489-1490	0.5	
362	The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. <i>Molecular Ecology</i> , 2015 , 24, 4912-30	5.7	39
361	Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. <i>AoB PLANTS</i> , 2015 , 7,	2.9	46
360	Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. <i>Physiologia Plantarum</i> , 2015 , 154, 511-25	4.6	25
359	Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?. <i>Plant, Cell and Environment,</i> 2015 , 38, 50-60	8.4	18
358	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. <i>New Phytologist</i> , 2015 , 206, 614-36	9.8	244
357	Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. <i>Plant and Soil</i> , 2014 , 384, 53-68	4.2	36
356	Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. <i>New Phytologist</i> , 2014 , 203, 63-9	9.8	289
355	Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes. <i>Plant, Cell and Environment</i> , 2014 , 37, 943-60	8.4	43

354	Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. <i>Plant, Cell and Environment</i> , 2014 , 37, 911-21	8.4	49	
353	The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. <i>Plant, Cell and Environment</i> , 2014 , 37, 684-95	8.4	22	
352	Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. <i>Plant, Cell and Environment</i> , 2014 , 37, 1276-98	8.4	87	
351	Complementary plant nutrient-acquisition strategies promote growth of neighbour species. <i>Functional Ecology</i> , 2014 , 28, 819-828	5.6	48	
350	Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. <i>Oecologia</i> , 2014 , 176, 345-55	2.9	44	
349	Physiological and ecological significance of biomineralization in plants. <i>Trends in Plant Science</i> , 2014 , 19, 166-74	13.1	111	
348	Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2014 , 16, 64-74	3	42	
347	Plant Responses to Limited Moisture and Phosphorus Availability. Advances in Agronomy, 2014 , 124, 14	13 72/9 0	51	
346	Distribution of Calcium and Phosphorus in Leaves of the Proteaceae. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1326-1327	0.5		
345	Divergent functioning of Proteaceae species: the South American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. <i>Functional Ecology</i> , 2014 , 28, 1356	-13:66	30	
344	Respiration in Terrestrial Ecosystems 2014 , 613-649		7	
343	Lipid biosynthesis and protein concentration respond uniquely to phosphate supply during leaf development in highly phosphorus-efficient Hakea prostrata. <i>Plant Physiology</i> , 2014 , 166, 1891-911	6.6	27	
342	The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation. <i>Plant, Cell and Environment</i> , 2014 , 37, 922-8	8.4	37	
341	Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. <i>New Phytologist</i> , 2014 , 201, 378-382	9.8	93	
340	Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. <i>Journal of Ecology</i> , 2014 , 102, 396-410	6	191	
339	Does cluster-root activity benefit nutrient uptake and growth of co-existing species?. <i>Oecologia</i> , 2014 , 174, 23-31	2.9	62	
338	Do arbuscular mycorrhizas or heterotrophic soil microbes contribute toward plant acquisition of a pulse of mineral phosphate?. <i>Plant and Soil</i> , 2013 , 373, 699-710	4.2	21	
337	Seasonal and diurnal variation in the stomatal conductance and paraheliotropism of tedera (Bituminaria bituminosa var. albomarginata) in the field. <i>Functional Plant Biology</i> , 2013 , 40, 719-729	2.7	10	

336	Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. <i>Annals of Botany</i> , 2013 , 111, 1233-41	4.1	43
335	Nutrient limitation along the Jurien Bay dune chronosequence: response to Uren & Parsons (). <i>Journal of Ecology</i> , 2013 , 101, 1088-1092	6	12
334	A long-term experimental test of the dynamic equilibrium model of species diversity. <i>Oecologia</i> , 2013 , 171, 439-48	2.9	16
333	Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate. <i>Annals of Botany</i> , 2013 , 112, 1449-59	4.1	13
332	How does pedogenesis drive plant diversity?. <i>Trends in Ecology and Evolution</i> , 2013 , 28, 331-40	10.9	130
331	Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game?. <i>Plant, Cell and Environment</i> , 2013 , 36, 1911-5	8.4	59
330	Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. <i>Plant and Soil</i> , 2013 , 367, 225-234	4.2	127
329	Acclimation responses of Arabidopsis thaliana to sustained phosphite treatments. <i>Journal of Experimental Botany</i> , 2013 , 64, 1731-43	7	33
328	Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot 2013 , 1, cot010		60
327	Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment. <i>Annals of Botany</i> , 2013 , 111, 445-54	4.1	59
326	Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies. <i>Annals of Botany</i> , 2013 , 111, 801-9	4.1	12
325	Commensalism in an agroecosystem: hydraulic redistribution by deep-rooted legumes improves survival of a droughted shallow-rooted legume companion. <i>Physiologia Plantarum</i> , 2013 , 149, 79-90	4.6	32
324	How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). <i>American Journal of Botany</i> , 2013 , 100, 263-88	2.7	163
323	Establishment, survival, and herbage production of novel, summer-active perennial pasture legumes in the low-rainfall cropping zone of Western Australia as affected by plant density and cutting frequency. <i>Crop and Pasture Science</i> , 2013 , 64, 71	2.2	15
322	Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. <i>Journal of Ecology</i> , 2012 , 100, 631-642	6	150
321	Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. <i>Plant, Cell and Environment</i> , 2012 , 35, 2170-80	8.4	106
320	Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. <i>New Phytologist</i> , 2012 , 196, 1098-1108	9.8	157
319	Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae). <i>Annals of Botany</i> , 2012 , 109, 887-96	4.1	50

318	Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, 2012, 195, 306	-3908	479
317	Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. <i>Annals of Botany</i> , 2012 , 110, 329-48	4.1	125
316	Functions of Macronutrients 2012 , 135-189		319
315	Growth, carboxylate exudates and nutrient dynamics in three herbaceous perennial plant species under low, moderate and high phosphorus supply. <i>Plant and Soil</i> , 2012 , 358, 105-117	4.2	35
314	Arid-zone Acacia species can access poorly soluble iron phosphate but show limited growth response. <i>Plant and Soil</i> , 2012 , 358, 119-130	4.2	8
313	Field application of a DNA-based assay to the measurement of roots of perennial grasses. <i>Plant and Soil</i> , 2012 , 358, 183-199	4.2	11
312	Precipitation of calcium, magnesium, strontium and barium in tissues of four Acacia species (Leguminosae: Mimosoideae). <i>PLoS ONE</i> , 2012 , 7, e41563	3.7	24
311	Underground leaves of Philcoxia trap and digest nematodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1154-8	11.5	34
310	Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species. <i>Annals of Botany</i> , 2012 , 110, 959-68	4.1	14
309	Comparison of novel and standard methods for analysing patterns of plant death in designed field experiments. <i>Journal of Agricultural Science</i> , 2012 , 150, 319-334	1	3
308	Drought resistance at the seedling stage in the promising fodder plant tedera (Bituminaria bituminosa var. albomarginata). <i>Crop and Pasture Science</i> , 2012 , 63, 1034	2.2	15
307	Little evidence for fire-adapted plant traits in Mediterranean climate regions. <i>Trends in Plant Science</i> , 2011 , 16, 69-76	13.1	132
306	Response to Keeley et al.: Fire as an evolutionary pressure shaping plant traits. <i>Trends in Plant Science</i> , 2011 , 16, 405	13.1	17
305	Soil phosphorus supply affects nodulation and N:P ratio in 11 perennial legume seedlings. <i>Crop and Pasture Science</i> , 2011 , 62, 992	2.2	12
304	Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance. <i>Plant, Cell and Environment</i> , 2011 , 34, 444-56	8.4	53
303	Dinitrogen-fixing Acacia species from phosphorus-impoverished soils resorb leaf phosphorus efficiently. <i>Plant, Cell and Environment</i> , 2011 , 34, 2060-70	8.4	21
302	Above- and below-ground interactions of grass and pasture legume species when grown together under drought and low phosphorus availability. <i>Plant and Soil</i> , 2011 , 348, 281-297	4.2	27
301	Direct measurement of roots in soil for single and mixed species using a quantitative DNA-based method. <i>Plant and Soil</i> , 2011 , 348, 123-137	4.2	50

300	Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. <i>Plant and Soil</i> , 2011 , 349, 89-120	4.2	262
299	Contrasting responses to drought stress in herbaceous perennial legumes. <i>Plant and Soil</i> , 2011 , 348, 299-314	4.2	31
298	Plant and microbial strategies to improve the phosphorus efficiency of agriculture. <i>Plant and Soil</i> , 2011 , 349, 121-156	4.2	532
297	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. <i>Plant and Soil</i> , 2011 , 348, 7-27	4.2	58
296	An enzymatic fluorescent assay for the quantification of phosphite in a microtiter plate format. <i>Analytical Biochemistry</i> , 2011 , 412, 74-8	3.1	12
295	Update on phosphorus nutrition in Proteaceae. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops?. <i>Plant Physiology</i> , 2011 , 156, 1058-66	6.6	146
294	Development and persistence of sandsheaths of Lyginia barbata (Restionaceae): relation to root structural development and longevity. <i>Annals of Botany</i> , 2011 , 108, 1307-22	4.1	16
293	Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. <i>Tree Physiology</i> , 2011 , 31, 1052-66	4.2	18
292	Seasonal water relations of Lyginia barbata (Southern rush) in relation to root xylem development and summer dormancy of root apices. <i>New Phytologist</i> , 2010 , 185, 1025-37	9.8	22
291	Multiple adaptive responses of Australian native perennial legumes with pasture potential to grow in phosphorus- and moisture-limited environments. <i>Annals of Botany</i> , 2010 , 105, 755-67	4.1	67
2 90	Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. <i>Annals of Botany</i> , 2010 , 105, 365-74	4.1	40
289	Localized application of soil organic matter shifts distribution of cluster roots of white lupin in the soil profile due to localized release of phosphorus. <i>Annals of Botany</i> , 2010 , 105, 585-93	4.1	28
288	Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis. <i>Plant Physiology</i> , 2010 , 153, 1385-97	6.6	24
287	From controlled environments to field simulations: Developing a growth model for the novel perennial pasture legume Cullen australasicum. <i>Agricultural and Forest Meteorology</i> , 2010 , 150, 1373-13	3 8 2 ⁸	6
286	Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. <i>Plant and Soil</i> , 2010 , 328, 133-143	4.2	78
285	Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. <i>Plant and Soil</i> , 2010 , 331, 241-255	4.2	93
284	Changes in water relations for Acacia ancistrocarpa on natural and mine-rehabilitation sites in response to an experimental wetting pulse in the Great Sandy Desert. <i>Plant and Soil</i> , 2010 , 326, 75-96	4.2	13
283	Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. <i>Plant and Soil</i> , 2010 , 335, 457-468	4.2	63

(2008-2010)

282	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. <i>Plant and Soil</i> , 2010 , 334, 11-31	4.2	278
281	Effects of leaf development and phosphorus supply on the photosynthetic characteristics of perennial legume species with pasture potential: modelling photosynthesis with leaf development. <i>Functional Plant Biology</i> , 2010 , 37, 713	2.7	11
280	Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. <i>Plant and Soil</i> , 2009 , 321, 83-115	4.2	395
279	Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. <i>Plant and Soil</i> , 2009 , 323, 295-308	4.2	88
278	Ecophysiology of Eucalyptus marginata and Corymbia calophylla in decline in an urban parkland. <i>Austral Ecology</i> , 2009 , 34, 499-507	1.5	8
277	Summer dormancy and winter growth: root survival strategy in a perennial monocotyledon. <i>New Phytologist</i> , 2009 , 183, 1085-1096	9.8	21
276	Darwin as a plant scientist: a Southern Hemisphere perspective. <i>Trends in Plant Science</i> , 2009 , 14, 421-3	513.1	9
275	Partitioning of evapotranspiration in a semi-arid eucalypt woodland in south-western Australia. <i>Agricultural and Forest Meteorology</i> , 2009 , 149, 25-37	5.8	83
274	Population Size Effects on Progeny Performance in Banksia ilicifolia R. Br. (Proteaceae). <i>HAYATI Journal of Biosciences</i> , 2009 , 16, 43-48	1.2	1
273	Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. <i>New Phytologist</i> , 2008 , 178, 371-381	9.8	83
272	Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. <i>Plant, Cell and Environment,</i> 2008 , 31, 1791-802	8.4	104
271	Root of edaphically controlled Proteaceae turnover on the Agulhas Plain, South Africa: phosphate uptake regulation and growth. <i>Plant, Cell and Environment</i> , 2008 , 31, 1825-33	8.4	27
270	Growth and Allocation 2008, 321-374		12
269	Plant Physiological Ecology 2008,		1036
268	Plant Water Relations 2008, 163-223		38
267	Carnivory 2008 , 533-544		
266	Mineral Nutrition 2008 , 255-320		25
265	Introduction⊞istory, Assumptions, and Approaches 2008 , 1-9		3

264	Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 2008, 23, 95-	1<u>0</u>3 .9	833
263	Water relations and mineral nutrition of closely related woody plant species on desert dunes and interdunes. <i>Australian Journal of Botany</i> , 2008 , 56, 27	1.2	40
262	Life Cycles: Environmental Influences and Adaptations 2008 , 375-402		10
261	Short-term and long-term root respiratory acclimation to elevated temperatures associated with root thermotolerance for two Agrostis grass species. <i>Journal of Experimental Botany</i> , 2008 , 59, 3803-9	7	21
2 60	Change in uptake, transport and accumulation of ions in Nerium oleander (rosebay) as affected by different nitrogen sources and salinity. <i>Annals of Botany</i> , 2008 , 102, 735-46	4.1	24
259	Water relations and mineral nutrition of Triodia grasses on desert dunes and interdunes. <i>Australian Journal of Botany</i> , 2008 , 56, 408	1.2	22
258	Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus?. <i>Functional Plant Biology</i> , 2008 , 35, 328-336	2.7	40
257	Plant growth modelling and applications: the increasing importance of plant architecture in growth models. <i>Annals of Botany</i> , 2008 , 101, 1053-63	4.1	165
256	Impact of phosphorus mineral source (Al P or Fe P) and pH on cluster-root formation and carboxylate exudation in Lupinus albus L <i>Plant and Soil</i> , 2008 , 304, 169-178	4.2	29
255	Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. <i>Oecologia</i> , 2008 , 158, 385-97	2.9	62
254	Effects of Microbial Pathogens 2008 , 479-489		
253	Decomposition 2008 , 545-554		
252	Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level 2008 , 247-254		
251	Rhizosphere processes do not explain variation in P acquisition from sparingly soluble forms among Lupinus albus accessions. <i>Australian Journal of Agricultural Research</i> , 2008 , 59, 616		7
250	Adaptations to winter-wet ironstone soils: a comparison between rare ironstone Hakea (Proteaceae) species and their common congeners. <i>Australian Journal of Botany</i> , 2008 , 56, 574	1.2	9
249	Symbiotic Associations 2008 , 403-443		2
248	Interactions Among Plants 2008 , 505-531		2
247	Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources. <i>New Phytologist</i> , 2007 , 173, 181-90) ^{9.8}	136

(2006-2007)

246	Cytochrome and alternative pathway activity in roots of thermal and non-thermal Agrostis species in response to high soil temperature. <i>Physiologia Plantarum</i> , 2007 , 129, 163-174	4.6	43
245	Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. <i>Plant, Cell and Environment</i> , 2007 , 30, 1557-65	8.4	115
244	Root Architecture of Jarrah (Eucalyptus marginata) Trees in Relation to Post-Mining Deep Ripping in Western Australia. <i>Restoration Ecology</i> , 2007 , 15, S65-S73	3.1	25
243	Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)?. <i>New Phytologist</i> , 2007 , 173, 592-599	9.8	27
242	Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: a proteacean with resistance for developing symptoms of 'P toxicity'. <i>Journal of Experimental Botany</i> , 2006 , 57, 413-23	7	69
241	Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. <i>Journal of Experimental Botany</i> , 2006 , 57, 623-31	7	64
240	Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. <i>Annals of Botany</i> , 2006 , 98, 693-713	4.1	800
239	The physiological significance of cyanide-resistant respiration in higher plants. <i>Plant, Cell and Environment</i> , 2006 , 3, 293-302	8.4	110
238	A model for simulating transpiration of Eucalyptus salmonophloia trees. <i>Physiologia Plantarum</i> , 2006 , 127, 465-477	4.6	5
237	Increased ecological amplitude through heterosis following wide outcrossing in Banksia ilicifolia R.Br. (Proteaceae). <i>Journal of Evolutionary Biology</i> , 2006 , 19, 1327-38	2.3	15
236	Yield advantage of a Blow-Bver affast-flespiring population of Lolium perenne cv. S23 depends on plant density. <i>New Phytologist</i> , 2006 , 123, 39-44	9.8	10
235	Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere. <i>New Phytologist</i> , 2006 , 169, 515-24	9.8	62
234	Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). <i>New Phytologist</i> , 2006 , 170, 491-500	9.8	71
233	Specialized 'dauciform' roots of Cyperaceae are structurally distinct, but functionally analogous with 'cluster' roots. <i>Plant, Cell and Environment</i> , 2006 , 29, 1989-99	8.4	92
232	Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature. <i>New Phytologist</i> , 2006 , 170, 479-90	9.8	47
231	Rhizosphere carboxylate concentrations of chickpea are affected by soil bulk density. <i>Plant Biology</i> , 2006 , 8, 198-203	3.7	7
230	Distribution of Carboxylates and Acid Phosphatase and Depletion of Different Phosphorus Fractions in the Rhizosphere of a Cereal and Three Grain Legumes. <i>Plant and Soil</i> , 2006 , 281, 109-120	4.2	142
229	Enhanced soil and leaf nutrient status of a Western Australian Banksia woodland community invaded by Ehrharta calycina and Pelargonium capitatum. <i>Plant and Soil</i> , 2006 , 284, 253-264	4.2	51

228	Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. <i>Plant and Soil</i> , 2006 , 288, 127-139	4.2	145
227	Preferential outcrossing in Banksia ilicifolia (Proteaceae). Australian Journal of Botany, 2005 , 53, 163	1.2	15
226	The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). <i>New Phytologist</i> , 2005 , 165, 887-98	9.8	68
225	Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. <i>Physiologia Plantarum</i> , 2005 , 124, 441-450	4.6	66
224	Response of mitochondria to light intensity in the leaves of sun and shade species. <i>Plant, Cell and Environment</i> , 2005 , 28, 760-771	8.4	73
223	Physiological changes in white lupin associated with variation in root-zone CO2 concentration and cluster-root P mobilization. <i>Plant, Cell and Environment</i> , 2005 , 28, 1203-1217	8.4	15
222	A genetic analysis of relative growth rate and underlying components in Hordeum spontaneum. <i>Oecologia</i> , 2005 , 142, 360-77	2.9	35
221	Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of shape Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. <i>Plant and Soil</i> , 2005 , 269, 357-367	4.2	39
220	Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. <i>Plant and Soil</i> , 2005 , 271, 175-187	4.2	139
219	Cluster Roots: A Curiosity in Context. <i>Plant and Soil</i> , 2005 , 274, 101-125	4.2	295
219	Cluster Roots: A Curiosity in Context. <i>Plant and Soil</i> , 2005 , 274, 101-125 The Roots of Carnivorous Plants. <i>Plant and Soil</i> , 2005 , 274, 127-140	4.2	295 39
218	The Roots of Carnivorous Plants. <i>Plant and Soil</i> , 2005 , 274, 127-140 Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of	4.2	39
218	The Roots of Carnivorous Plants. <i>Plant and Soil</i> , 2005 , 274, 127-140 Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. <i>Plant and Soil</i> , 2005 , 272, 11-27	4.2	39 51
218 217 216	The Roots of Carnivorous Plants. <i>Plant and Soil</i> , 2005 , 274, 127-140 Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. <i>Plant and Soil</i> , 2005 , 272, 11-27 Root Physiology (From Gene to Function. <i>Plant and Soil</i> , 2005 , 274, vii-xv Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising	4.2	39 51 7
218 217 216 215	The Roots of Carnivorous Plants. <i>Plant and Soil</i> , 2005 , 274, 127-140 Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. <i>Plant and Soil</i> , 2005 , 272, 11-27 Root Physiology Ifrom Gene to Function. <i>Plant and Soil</i> , 2005 , 274, vii-xv Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea. <i>Functional Plant Biology</i> , 2005 , 32, 153-159 Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual	4.2	39 51 7 40
218 217 216 215	The Roots of Carnivorous Plants. <i>Plant and Soil</i> , 2005 , 274, 127-140 Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. <i>Plant and Soil</i> , 2005 , 272, 11-27 Root Physiology (From Gene to Function. <i>Plant and Soil</i> , 2005 , 274, vii-xv Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea. <i>Functional Plant Biology</i> , 2005 , 32, 153-159 Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliser. <i>Australian Journal of Agricultural Research</i> , 2005 , 56, 1041 Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of	4.2 4.2 2.7	 39 51 7 40 74

210	Regulation of Respiration In Vivo 2005 , 1-15		26
209	Cluster roots: A curiosity in context. <i>Plant Ecophysiology</i> , 2005 , 101-125		8
208	RESPONSE OF GROWTH OF TOMATO TO PHOSPHORUS AND NITROGEN NUTRITION. <i>Acta Horticulturae</i> , 2004 , 357-364	0.3	6
207	From individual leaf elongation to whole shoot leaf area expansion: a comparison of three Aegilops and two Triticum species. <i>Annals of Botany</i> , 2004 , 94, 99-108	4.1	24
206	Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). <i>Journal of Experimental Botany</i> , 2004 , 55, 1033-44	7	131
205	Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. <i>Plant Physiology</i> , 2004 , 135, 549-60	6.6	132
204	Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production. <i>Plant and Cell Physiology</i> , 2004 , 45, 1015-22	4.9	41
203	Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice. <i>Plant, Cell and Environment</i> , 2004 , 27, 853-862	8.4	57
202	A root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae). <i>Plant, Cell and Environment</i> , 2004 , 27, 991-1004	8.4	75
201	Effects of applied gibberellic acid and paclobutrazol on leaf expansion and biomass allocation in two Aegilops species with contrasting leaf elongation rates. <i>Physiologia Plantarum</i> , 2004 , 122, 143-151	4.6	13
200	Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. <i>New Phytologist</i> , 2004 , 162, 745-753	9.8	59
199	Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. <i>Plant and Soil</i> , 2004 , 261, 1-10	4.2	35
198	Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. <i>Advances in Ecological Research</i> , 2004 , 283-362	4.6	57
197	Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. <i>Journal of Experimental Botany</i> , 2003 , 54, 1957-67	7	74
196	Epidermal cell division and cell elongation in two Aegilops species with contrasting leaf elongation rates. <i>Functional Plant Biology</i> , 2003 , 30, 425-432	2.7	18
195	Growth responses to waterlogging and drainage of woody Hakea (Proteaceae) seedlings, originating from contrasting habitats in south-western Australia. <i>Plant and Soil</i> , 2003 , 253, 57-70	4.2	24
194	Introduction, Dryland Salinity: A Key Environmental Issue in Southern Australia. <i>Plant and Soil</i> , 2003 , 257, V-VII	4.2	94
193	The Alternative Oxidase: in vivo Regulation and Function. <i>Plant Biology</i> , 2003 , 5, 2-15	3.7	199

192	Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata R.Br <i>Plant and Soil</i> , 2003 , 248, 209-219	4.2	72
191	Interaction of nitrogen and phosphorus nutrition in determining growth. Plant and Soil, 2003, 248, 257-2	268	108
190	Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. <i>Plant and Soil</i> , 2003 , 248, 187-197	4.2	209
189	Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. <i>Plant, Cell and Environment</i> , 2003 , 26, 265-273	8.4	125
188	Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. <i>Plant, Cell and Environment</i> , 2003 , 26, 1713-1722	8.4	60
187	Are trade-offs in allocation pattern and root morphology related to species abundance? A congeneric comparison between rare and common species in the south-western Australian flora. <i>Journal of Ecology</i> , 2003 , 91, 58-67	6	54
186	Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata R.Br. 2003 , 209-219		1
185	Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake 2003 , 187-197		O
184	Interaction of nitrogen and phosphorus nutrition in determining growth 2003, 257-268		4
183	Short-term waterlogging has long-term effects on the growth and physiology of wheat. <i>New Phytologist</i> , 2002 , 153, 225-236	9.8	206
182	The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. <i>Plant and Soil</i> , 2002 , 238, 111-122	4.2	109
181	Changes in the acquisition and partitioning of carbon and nitrogen in the gibberellin-deficient mutants A70 and W335 of tomato (Solanum lycopersicum L.). <i>Plant, Cell and Environment</i> , 2002 , 25, 883	-891	33
180	The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. <i>Journal of Experimental Botany</i> , 2002 , 53, 1635-42	7	55
179	Ethylene emission and responsiveness to applied ethylene vary among Poa species that inherently differ in leaf elongation rates. <i>Plant Physiology</i> , 2002 , 129, 1382-90	6.6	46
178	Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua roots. <i>Journal of Experimental Botany</i> , 2002 , 53, 1081-8	7	46
177	Interactive effects of nitrogen and irradiance on growth and partitioning of dry mass and nitrogen in young tomato plants. <i>Functional Plant Biology</i> , 2002 , 29, 1319-1328	2.7	44
176	Respiratory Patterns in Roots in Relation to Their Functioning 2002 , 521-552		74
175	Allelopathic and autotoxic interactions in selected populations of Loliumperenne grown in monoculture and mixed culture. <i>Functional Plant Biology</i> , 2002 , 29, 1465-1473	2.7	7

(2000-2001)

174	Exudation of carboxylates in Australian Proteaceae: chemical composition. <i>Plant, Cell and Environment</i> , 2001 , 24, 891-904	8.4	106	
173	Growth rate and biomass partitioning of wildtype and low-gibberellin tomato (Solanum lycopersicum) plants growing at a high and low nitrogen supply. <i>Physiologia Plantarum</i> , 2001 , 111, 33-39	4.6	26	
172	The influence of a reduced gibberellin biosynthesis and nitrogen supply on the morphology and anatomy of leaves and roots of tomato (Solanum lycopersicum). <i>Physiologia Plantarum</i> , 2001 , 111, 40-45	;4.6	10	
171	Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. <i>Plant, Cell and Environment</i> , 2001 , 24, 1309-1317	8.4	55	
170	Leaf and root respiration of Lolium perenne populations selected for contrasting leaf respiration rates are affected by intra- and interpopulation interactions 2001 , 231, 267-274		11	
169	Chemical Composition of the Leaves of Plants with Different Ecological Strategies from the Boreal Zone. <i>Russian Journal of Ecology</i> , 2001 , 32, 221-229	0.7	7	
168	Plant Construction Cost in the Boreal Species Differing in Their Ecological Strategies. <i>Russian Journal of Plant Physiology</i> , 2001 , 48, 67-73	1.6	13	
167	Regulation of growth by phosphorus supply in whole tomato plants 2001 , 114-115		2	
166	Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. <i>Functional Plant Biology</i> , 2001 , 28, 1121	2.7	51	
165	Regulation of alternative oxidase activity in six wild monocotyledonous species. An in vivo study at the whole root level. <i>Plant Physiology</i> , 2001 , 126, 376-87	6.6	52	
164	Growth characteristics in Hordeum spontaneum populations from different habitats. <i>New Phytologist</i> , 2000 , 146, 471-481	9.8	34	
163	The alternative oxidase in roots of poa annua after transfer from high-light to low-light conditions. <i>Plant Journal</i> , 2000 , 23, 623-32	6.9	47	
162	Photosynthesis, biomass partitioning and peroxisomicine A1 production of Karwinskia species in response to nitrogen supply. <i>Physiologia Plantarum</i> , 2000 , 108, 300-306	4.6	5	
161	A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 2. Balanced growth driven by C fluxes and regulated by signals from C and N substrate. <i>Plant and Soil</i> , 2000 , 220, 71-87	4.2	19	
160	A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. <i>Plant and Soil</i> , 2000 , 220, 49-69	4.2	42	
159	Influx, efflux and net uptake of nitrate in Quercus suber seedlings. <i>Plant and Soil</i> , 2000 , 221, 25-32	4.2	18	
158	The influence of temperature and nitrogen source on growth and nitrogen uptake of two polar-desert species, Saxifraga caespitosa and Cerastium alpinum. <i>Plant and Soil</i> , 2000 , 227, 139-148	4.2	10	
157	Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species. <i>Journal of Experimental Botany</i> , 2000 , 51, 1089-1097	7	34	

156	Can meristematic activity determine variation in leaf size and elongation rate among four Poa species? A kinematic study. <i>Plant Physiology</i> , 2000 , 124, 845-56	6.6	57
155	Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species. <i>Journal of Experimental Botany</i> , 2000 , 51, 1089-109	7 ⁷	23
154	Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. <i>Plant Physiology</i> , 2000 , 122, 915-23	6.6	226
153	Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species. <i>Journal of Experimental Botany</i> , 2000 , 51, 1089-97	7	24
152	Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation. <i>Phytochemistry</i> , 1999 , 50, 571-580	4	38
151	Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants?. <i>Plant, Cell and Environment,</i> 1999 , 22, 649-657	8.4	137
150	Control of Leaf Growth and its Role in Determining Variation in Plant Growth Rate from an Ecological Perspective. <i>Plant Biology</i> , 1999 , 1, 13-18	3.7	14
149	Presymptomatic visualization of plant-virus interactions by thermography. <i>Nature Biotechnology</i> , 1999 , 17, 813-6	44.5	142
148	Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow-growing grass species. <i>Plant and Soil</i> , 1999 , 215, 123-134	4.2	47
147	Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv tomato. <i>Plant Physiology</i> , 1999 , 120, 529-38	6.6	159
146	Polyamine concentrations in four Poa species, differing in their maximum relative growth rate, grown with free access to nitrate and at limiting nitrate supply. <i>Plant Growth Regulation</i> , 1998 , 24, 77-89.	93.2	6
145	Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species. <i>New Phytologist</i> , 1998 , 140, 425-437	9.8	41
144	Why do fast- and slow-growing grass species differ so little in their rate of root respiration, considering the large differences in rate of growth and ion uptake?. <i>Plant, Cell and Environment</i> , 1998 , 21, 995-1005	8.4	69
143	Mineral Nutrition 1998 , 239-298		9
142	The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase. <i>Plant Physiology</i> , 1998 , 118, 599-607	6.6	87
141	Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species. <i>New Phytologist</i> , 1998 , 140, 425-437	9.8	39
140	Leaf growth in the fast-growing Holcus lanatus and the slow-growing Deschampsia flexuosa: tissue maturation. <i>Journal of Experimental Botany</i> , 1998 , 49, 1509-1517	7	8
139	Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level 1998 , 230-238		

138 Life Cycles: Environmental Influences and Adaptations **1998**, 352-377

137	Plant Physiological Ecology 1998 ,		1082
136	Role in Ecosystem and Global Processes 1998 , 495-517		2
135	Photosynthesis, Respiration, and Long-Distance Transport 1998 , 10-153		29
134	Plant Water Relations 1998 , 154-209		10
133	Growth and Allocation 1998 , 299-351		13
132	Biotic Influences 1998 , 378-494		1
131	Leaf Respiration in Light and Darkness (A Comparison of Slow- and Fast-Growing Poa Species). <i>Plant Physiology</i> , 1997 , 113, 961-965	6.6	96
130	SO42- Deprivation Has an Early Effect on the Content of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Photosynthesis in Young Leaves of Wheat. <i>Plant Physiology</i> , 1997 , 115, 12	:36-62:	39 ⁷⁶
129	Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image-processing analysis and pyrolysishass spectrometry. <i>Plant, Cell and Environment</i> , 1997 , 20, 881-897	8.4	63
128	Growth and water-use efficiency of 10 Triticum aestivum cultivars at different water availability in relation to allocation of biomass. <i>Plant, Cell and Environment</i> , 1997 , 20, 200-210	8.4	70
127	A comparison of the vegetative growth of male-sterile and hermaphroditic lines of Plantago lanceolata in relation to N supply. <i>New Phytologist</i> , 1997 , 135, 429-437	9.8	10
126	Phosphorus allocation and utilization in three grass species with contrasting response to N and P supply. <i>New Phytologist</i> , 1997 , 137, 293-302	9.8	37
125	The Causes of Inherently Slow Growth in Alpine Plants: An Analysis Based on the Underlying Carbon Economies of Alpine and Lowland Poa Species. <i>Functional Ecology</i> , 1996 , 10, 698	5.6	106
124	The Association of Biomass Allocation With Growth and Water Use Efficiency of Two Triticum aestivum Cultivars. <i>Functional Plant Biology</i> , 1996 , 23, 751	2.7	16
123	The Cyanide-Resistant Oxidase: To Inhibit or Not to Inhibit, That Is the Question. <i>Plant Physiology</i> , 1996 , 110, 1-2	6.6	129
122	Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. <i>Plant and Soil</i> , 1996 , 185, 137-149	4.2	82
121	Yield and water use of wheat (Triticum aestivum) in a Mediterranean environment: Cultivar differences and sowing density effects. <i>Plant and Soil</i> , 1996 , 181, 251-262	4.2	26

120	The interactive effect of irradiance and source of nitrogen on growth and root respiration of Calamagrostis epigejos. <i>New Phytologist</i> , 1996 , 134, 407-412	9.8	16
119	Response to phosphorus supply of tropical tree seedlings: a comparison between a pioneer species Tapirira obtusa and a climax species Lecythis corrugata. <i>New Phytologist</i> , 1996 , 132, 97-102	9.8	23
118	Relative growth rate correlates negatively with pathogen resistance in radish: the role of plant chemistry. <i>Plant, Cell and Environment</i> , 1996 , 19, 1281-1290	8.4	27
117	The relationship between the relative growth rate and nitrogen economy of alpine and lowland Poa species. <i>Plant, Cell and Environment</i> , 1996 , 19, 1324-1330	8.4	31
116	Carbon and nitrogen economy of four Triticum aestivum cultivars differing in relative growth rate and water use efficiency. <i>Plant, Cell and Environment</i> , 1996 , 19, 998-1004	8.4	29
115	Relative growth rate, biomass allocation pattern and water use efficiency of three wheat cultivars during early ontogeny as dependent on water availability. <i>Physiologia Plantarum</i> , 1996 , 98, 493-504	4.6	11
114	Relative growth rate, biomass allocation pattern and water use efficiency of three wheat cultivars during early ontogeny as dependent on water availability. <i>Physiologia Plantarum</i> , 1996 , 98, 493-504	4.6	23
113	Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. <i>Plant and Soil</i> , 1995 , 171, 217-227	4.2	77
112	Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. <i>Plant and Soil</i> , 1995 , 170, 251-265	4.2	274
111	Carbon use in root respiration as affected by elevated atmospheric O2. <i>Plant and Soil</i> , 1995 , 187, 251-20	634.2	32
111	Carbon use in root respiration as affected by elevated atmospheric O2. <i>Plant and Soil</i> , 1995 , 187, 251-20 Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. <i>Planta</i> , 1995 , 196, 412-419	6 <u>3</u> .2	32 51
	Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and		51
110	Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. <i>Planta</i> , 1995 , 196, 412-419 Effects of global environmental change on carbon partitioning in vegetative plants of Triticum	4.7	51
110	Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. <i>Planta</i> , 1995 , 196, 412-419 Effects of global environmental change on carbon partitioning in vegetative plants of Triticum aestivum and closely related Aegilops species. <i>Global Change Biology</i> , 1995 , 1, 397-406 Reduction, assimilation and transport of N in normal and gibberellin-deficient tomato plants.	4.7	51
110 109 108	Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. <i>Planta</i> , 1995 , 196, 412-419 Effects of global environmental change on carbon partitioning in vegetative plants of Triticum aestivum and closely related Aegilops species. <i>Global Change Biology</i> , 1995 , 1, 397-406 Reduction, assimilation and transport of N in normal and gibberellin-deficient tomato plants. <i>Physiologia Plantarum</i> , 1995 , 95, 347-354 Regulation of K+ and NO3IFluxes in roots of sunflower (Helianthus annuus) after changes in light	4·7 11.4 4.6	51 23 19
110 109 108	Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. <i>Planta</i> , 1995 , 196, 412-419 Effects of global environmental change on carbon partitioning in vegetative plants of Triticum aestivum and closely related Aegilops species. <i>Global Change Biology</i> , 1995 , 1, 397-406 Reduction, assimilation and transport of N in normal and gibberellin-deficient tomato plants. <i>Physiologia Plantarum</i> , 1995 , 95, 347-354 Regulation of K+ and NO3Ifluxes in roots of sunflower (Helianthus annuus) after changes in light intensity. <i>Physiologia Plantarum</i> , 1995 , 93, 279-285 A critique of the use of inhibitors to estimate partitioning of electrons between mitochondrial	4·7 11.4 4.6 4.6	51 23 19
110 109 108 107	Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. <i>Planta</i> , 1995 , 196, 412-419 Effects of global environmental change on carbon partitioning in vegetative plants of Triticum aestivum and closely related Aegilops species. <i>Global Change Biology</i> , 1995 , 1, 397-406 Reduction, assimilation and transport of N in normal and gibberellin-deficient tomato plants. <i>Physiologia Plantarum</i> , 1995 , 95, 347-354 Regulation of K+ and NO3Ifluxes in roots of sunflower (Helianthus annuus) after changes in light intensity. <i>Physiologia Plantarum</i> , 1995 , 93, 279-285 A critique of the use of inhibitors to estimate partitioning of electrons between mitochondrial respiratory pathways in plants. <i>Physiologia Plantarum</i> , 1995 , 95, 523-532	4.7 11.4 4.6 4.6	51 23 19 19

102	The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to leaf dark respiration. <i>Journal of Experimental Botany</i> , 1995 , 46, 1185-1194	7	81
101	Partitioning of Electrons between the Cytochrome and Alternative Pathways in Intact Roots. <i>Plant Physiology</i> , 1995 , 108, 1179-1183	6.6	33
100	Reduction, assimilation and transport of N in normal and gibberellin-deficient tomato plants. <i>Physiologia Plantarum</i> , 1995 , 95, 347-354	4.6	4
99	The effect of handling on photosynthesis, transpiration, respiration, and nitrogen and carbohydrate content of populations of Lolium perenne. <i>Physiologia Plantarum</i> , 1994 , 91, 631-638	4.6	
98	The effect of handling on photosynthesis, transpiration, respiration, and nitrogen and carbohydrate content of populations of Lolium perenne. <i>Physiologia Plantarum</i> , 1994 , 91, 631-638	4.6	15
97	Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. <i>Physiologia Plantarum</i> , 1994 , 92, 585-594	4.6	83
96	Growth rate, plant development and water relations of the ABA-deficient tomato mutant sitiens. <i>Physiologia Plantarum</i> , 1994 , 92, 102-108	4.6	67
95	Growth rate, plant development and water relations of the ABA-deficient tomato mutant sitiens. <i>Physiologia Plantarum</i> , 1994 , 92, 102-108	4.6	2
94	Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. <i>Physiologia Plantarum</i> , 1994 , 92, 585-594	4.6	3
93	Evidence for Optimal Partitioning of Biomass and Nitrogen at a Range of Nitrogen Availabilities for a Fast- and Slow-Growing Species. <i>Functional Ecology</i> , 1993 , 7, 63	5.6	73
92	Effects of N-supply on the rates of photosynthesis and shoot and root respiration of inherently fast- and slow-growing monocotyledonous species. <i>Physiologia Plantarum</i> , 1993 , 89, 563-569	4.6	23
91	Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. <i>Plant Ecology</i> , 1993 , 104-105, 263-271		93
90	Assimilation, respiration and allocation of carbon inPlantago major as affected by atmospheric CO2 levels. <i>Plant Ecology</i> , 1993 , 104-105, 369-378		37
89	Contribution of physiological and morphological plant traits to a species' competitive ability at high and low nitrogen supply: A hypothesis for inherently fast- and slow-growing monocotyledonous species. <i>Oecologia</i> , 1993 , 94, 434-440	2.9	111
88	Phenotypic plasticity in response to nitrate supply of an inherently fast-growing species from a fertile habitat and an inherently slow-growing species from an infertile habitat. <i>Oecologia</i> , 1993 , 96, 546	8 ² 534	46
87	The effect of handling on the yield of two populations of Lolium perenne selected for differences in mature leaf respiration rate. <i>Physiologia Plantarum</i> , 1993 , 89, 341-346	4.6	8
86	Effects of N-supply on the rates of photosynthesis and shoot and root respiration of inherently fast- and slow-growing monocotyledonous species. <i>Physiologia Plantarum</i> , 1993 , 89, 563-569	4.6	21
85	Assimilation, respiration and allocation of carbon in Plantago major as affected by atmospheric CO2 levels 1993 , 369-378		4

84	Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. <i>Advances in Ecological Research</i> , 1992 , 187-261	4.6	844
83	The effect of nitrate-nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. <i>Oecologia</i> , 1992 , 91, 253-259	2.9	68
82	Partitioning of nitrogen and biomass at a range of N-addition rates and their consequences for growth and gas exchange in two perennial grasses from inland dunes. <i>Physiologia Plantarum</i> , 1992 , 86, 152-160	4.6	23
81	Respiratory pathways in germinating maize radicles correlated with desiccation tolerance and soluble sugars. <i>Physiologia Plantarum</i> , 1992 , 85, 581-588	4.6	33
80	Respiratory pathways in germinating maize radicles correlated with desiccation tolerance and soluble sugars. <i>Physiologia Plantarum</i> , 1992 , 85, 581-588	4.6	3
79	Partitioning of nitrogen and biomass at a range of N-addition rates and their consequences for growth and gas exchange in two perennial grasses from inland dunes. <i>Physiologia Plantarum</i> , 1992 , 86, 152-160	4.6	6
78	Is Interspecific Variation in Relative Growth Rate Positively Correlated with Biomass Allocation to the Leaves?. <i>American Naturalist</i> , 1991 , 138, 1264-1268	3.7	33
77	Respiratory energy requirements of roots vary with the potential growth rate of a plant species. <i>Physiologia Plantarum</i> , 1991 , 83, 469-475	4.6	160
76	Evidence for a significant contribution by peroxidase-mediated O2 uptake to root respiration of Brachypodium pinnatum. <i>Planta</i> , 1991 , 183, 347-52	4.7	20
75	Respiratory energy requirements of roots vary with the potential growth rate of a plant species. <i>Physiologia Plantarum</i> , 1991 , 83, 469-475	4.6	22
74	Carbon and nitrogen economy of 24 wild species differing in relative growth rate. <i>Plant Physiology</i> , 1990 , 94, 621-7	6.6	488
73	Root Respiration and Growth in Plantago major as Affected by Vesicular-Arbuscular Mycorrhizal Infection. <i>Plant Physiology</i> , 1989 , 91, 227-32	6.6	59
72	Modelling of Respiration: Effect of Variation in Respiration on Plant Growth in Two Carex Species. <i>Functional Ecology</i> , 1989 , 3, 655	5.6	4
71	A Physiological Analysis of Genetic Variation in Relative Growth Rate within Plantago major L <i>Functional Ecology</i> , 1989 , 3, 577	5.6	46
70	Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate. <i>New Phytologist</i> , 1989 , 113, 283-290	9.8	51
69	Cytokinin concentration in relation to mineral nutrition and benzyladenine treatment in Plantago major ssp. pleiosperma. <i>Physiologia Plantarum</i> , 1989 , 75, 511-517	4.6	114
68	Variation in the rate of root respiration of two Carex species: A comparison of four related methods to determine the energy requirements for growth, maintenance and ion uptake 1989 , 131-135		1
67	Variation in the rate of root respiration of twoCarex species: A comparison of four related methods to determine the energy requirements for growth, maintenance and ion uptake. <i>Plant and Soil</i> , 1988, 111, 207-211	4.2	6

66	Modelling of the responses to nitrogen availability of two Plantago species grown at a range of exponential nutrient addition rates. <i>Plant, Cell and Environment</i> , 1988 , 11, 827-834	8.4	17
65	Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to the internal phosphate concentration. <i>Physiologia Plantarum</i> , 1988 , 74, 701-	70 ⁴ 7 ⁶	26
64	The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and respiration of Plantago major. <i>Physiologia Plantarum</i> , 1988 , 73, 553-559	4.6	129
63	Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. <i>Physiologia Plantarum</i> , 1988 , 72, 483-491	4.6	131
62	Metabolism and translocation of nitrogen in two Lolium perenne populations with contrasting rates of mature leaf respiration and yield. <i>Physiologia Plantarum</i> , 1988 , 72, 631-636	4.6	30
61	Measurement of the activity and capacity of the alternative pathway in intact plant tissues: Identification of problems and possible solutions. <i>Physiologia Plantarum</i> , 1988 , 72, 642-649	4.6	139
60	Respiration in Intact Tissues: Problems and Perspectives 1987 , 321-330		3
59	A physiological analysis of genotypic variation in relative growth rate: Can growth rate confer ecological advantage? 1987 , 237-252		28
58	Growth and competitive ability of a highly plastic and a marginally plastic genotype of Plantago major in a fluctuating environment. <i>Physiologia Plantarum</i> , 1986 , 67, 217-222	4.6	40
57	Respiration in mature leaves of Lolium perenne as affected by nutrient supply, cutting and competition. <i>Physiologia Plantarum</i> , 1986 , 66, 53-57	4.6	17
56	Growth comparisons of a supernodulating soybean (Glycine max) mutant and its wild-type parent. <i>Physiologia Plantarum</i> , 1986 , 68, 375-382	4.6	85
55	Hydroxamate-Stimulated O(2) Uptake in Roots of Pisum sativum and Zea mays, Mediated by a Peroxidase: Its Consequences for Respiration Measurements. <i>Plant Physiology</i> , 1986 , 82, 236-40	6.6	63
54	Photosynthesis and Respiration of Two Inbred Lines of Plantago Major L. Differing in Relative Growth Rate 1986 , 251-255		12
53	Effects of Drought on Partitioning of Nitrogen in Two Wheat Varieties Differing in Drought-tolerance. <i>Annals of Botany</i> , 1985 , 55, 743-754	4.1	28
52	Effect of Drought on Metabolism and Partitioning of Carbon in Two Wheat Varieties Differing in Drought-tolerance. <i>Annals of Botany</i> , 1985 , 55, 727-742	4.1	67
51	Regulation of Respiration in the Leaves and Roots of Two Lolium perenne Populations with Contrasting Mature Leaf Respiration Rates and Crop Yields. <i>Plant Physiology</i> , 1985 , 78, 678-83	6.6	56
50	Respiration of crop species under CO2 enrichment. <i>Physiologia Plantarum</i> , 1985 , 63, 351-356	4.6	129
49	Respiration in Intact Plants and Tissues: Its Regulation and Dependence on Environmental Factors, Metabolism and Invaded Organisms 1985 , 418-473		83

48 Respiratory Metabolism in Wheat **1985**, 123-127

47	Energy Metabolism in Nodulated Roots 1984 , 453-460		1
46	Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. <i>Plant Physiology</i> , 1983 , 72, 598-603	6.6	190
45	The regulation of respiration in the dark in wheat leaf slices. <i>Plant Science Letters</i> , 1983 , 32, 313-320		37
44	Nitrogen Redistribution during Grain Growth in Wheat (Triticum aestivum L.): IV. Development of a Quantitative Model of the Translocation of Nitrogen to the Grain. <i>Plant Physiology</i> , 1983 , 71, 7-14	6.6	194
43	Respiratory Properties of Developing Bean and Pea Leaves. Functional Plant Biology, 1983, 10, 237	2.7	14
42	Cyanide-resistant respiration in roots and leaves. Measurements with intact tissues and isolated mitochondria. <i>Physiologia Plantarum</i> , 1983 , 58, 148-154	4.6	97
41	The regulation of glycolysis and electron transport in roots. <i>Physiologia Plantarum</i> , 1983 , 58, 155-166	4.6	65
40	Growth and the efficiency of root respiration of Pisum sativum as dependent on the source of nitrogen. <i>Physiologia Plantarum</i> , 1983 , 58, 533-543	4.6	50
39	Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values and their significance. <i>Physiologia Plantarum</i> , 1983 , 58, 556-563	4.6	110
38	'The functional equilibrium', nibbling on the edges of a paradigm <i>NJAS Wageningen Journal of Life Sciences</i> , 1983 , 31, 305-311		30
37	Kinetin application to roots and its effect on uptake, translocation and distribution of nitrogen in wheat (Triticum aestivum) grown with a split root system. <i>Physiologia Plantarum</i> , 1982 , 56, 430-435	4.6	54
36	Kinetics of nitrate uptake by different species from nutrient-rich and nutrient-poor habitats as affected by the nutrient supply. <i>Physiologia Plantarum</i> , 1982 , 55, 103-110	4.6	22
35	Cyanide-resistant respiration: A non-phosphorylating electron transport pathway acting as an energy overflow. <i>Physiologia Plantarum</i> , 1982 , 55, 478-485	4.6	260
34	Growth and translocation of C and N in wheat (Triticum aestivum) grown with a split root system. <i>Physiologia Plantarum</i> , 1982 , 56, 421-429	4.6	72
33	Translocation of nitrogen in a vegetative wheat plant (Triticum aestivum). <i>Physiologia Plantarum</i> , 1982 , 56, 11-17	4.6	109
32	Translocation and utilization of carbon in wheat (Triticum aestivum). <i>Physiologia Plantarum</i> , 1982 , 56, 18-22	4.6	22
31	Energy metabolism of Plantago major ssp. major as dependent on the supply of mineral nutrients. <i>Physiologia Plantarum</i> , 1981 , 51, 245-252	4.6	45

30	Interactions between osmoregulation and the alternative respiratory pathway in Plantago coronopus as affected by salinity. <i>Physiologia Plantarum</i> , 1981 , 51, 63-68	4.6	63	
29	Energy metabolism of Plantago lanceolata as dependent on the supply of mineral nutrients. <i>Physiologia Plantarum</i> , 1981 , 51, 85-92	4.6	50	
28	Nitrogen metabolism of Plantago lanceolata as dependent on the supply of mineral nutrients. <i>Physiologia Plantarum</i> , 1981 , 51, 93-98	4.6	35	•
27	Growth, photosynthesis and respiration in Plantago coronopus as affected by salinity. <i>Physiologia Plantarum</i> , 1981 , 51, 265-268	4.6	20	
26	Nitrogen metabolism of Plantago major ssp. major as dependent on the supply of mineral nutrients. <i>Physiologia Plantarum</i> , 1981 , 52, 108-114	4.6	29	
25	The efficiency of root respiration in different environments 1981 , 281-285			
24	Efficiency and regulation of root respiration in a legume: Effects of the N source. <i>Physiologia Plantarum</i> , 1980 , 50, 319-325	4.6	45	
23	The Effect of Light Intensity and Relative Humidity on Growth Rate and Root Respiration of Plantago lanceolata and Zea mays. <i>Journal of Experimental Botany</i> , 1980 , 31, 1621-1630	7	52	
22	Cyanide-Resistant Root Respiration and Tap Root Formation in Two Subspecies of Hypochaeris radicata. <i>Physiologia Plantarum</i> , 1979 , 45, 235-239	4.6	15	
21	Respiration of Senecio Shoots: Inhibition during Photosynthesis, Resistance to Cyanide and Relation to Growth and Maintenance. <i>Physiologia Plantarum</i> , 1979 , 45, 351-356	4.6	16	
20	Efficiency of Root Respiration in Relation to Growth Rate, Morphology and Soil Composition. <i>Physiologia Plantarum</i> , 1979 , 46, 194-202	4.6	51	
19	Respiration of the Roots of Flood-Tolerant and Flood-Intolerant Senecio Species: Affinity for Oxygen and Resistance to Cyanide. <i>Physiologia Plantarum</i> , 1978 , 42, 163-166	4.6	24	
18	Efficiency of Root Respiration of a Flood-Tolerant and a Flood-Intolerant Senecio Species as Affected by Low Oxygen Tension. <i>Physiologia Plantarum</i> , 1978 , 42, 179-184	4.6	35	
17	Growth Respiration of a Flood-Tolerant and a Flood-Intolerant Senecio Species: Correlation between Calculated and Experimental Values. <i>Physiologia Plantarum</i> , 1978 , 43, 219-224	4.6	25	
16	The Significance of Oxygen Transport and of Metabolic Adaptation in Flood-Tolerance of Senecio Species. <i>Physiologia Plantarum</i> , 1978 , 43, 277-281	4.6	29	
15	Respiration and NADH-Oxidation of the Roots of Flood-Tolerant and Flood-Intolerant Senecio Species as Affected by Anaerobiosis. <i>Physiologia Plantarum</i> , 1976 , 37, 117-122	4.6	35	
14	Adding intercropped maize and faba bean root residues increases phosphorus bioavailability in a calcareous soil due to organic phosphorus mineralization. <i>Plant and Soil</i> ,1	4.2	1	
13	Phosphate-solubilising microorganisms mainly increase plant phosphate uptake by effects of pH on root physiology. <i>Plant and Soil</i> ,1	4.2	2	

12	In Memoriam David Thomas Clarkson (1938-2021). Plant and Soil,1	4.2	
11	Using activated charcoal to remove substances interfering with the colorimetric assay of inorganic phosphate in plant extracts. <i>Plant and Soil</i> ,1	4.2	O
10	Nitrogen addition increases aboveground silicon and phytolith concentrations in understory plants of a tropical forest. <i>Plant and Soil</i> ,1	4.2	О
9	Leaf traits from stomata to morphology are associated with climatic and edaphic variables for dominant tropical forest evergreen oaks. <i>Journal of Plant Ecology</i> ,	1.7	4
8	AusTraits 🖟 curated plant trait database for the Australian flora		1
7	Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. <i>Plant and Soil</i> ,1	4.2	11
6	Increasing nitrogen supply to phosphorus-deficient Medicago sativa decreases shoot growth and enhances root exudation of tartrate to discharge surplus carbon dependent on nitrogen form. <i>Plant and Soil</i> ,1	4.2	1
5	Role of Root Clusters in Phosphorus Acquisition and Increasing Biological Diversity in Agriculture237-2	250	15
4	The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops. <i>Plant and Soil</i> ,1	4.2	1
3	Phosphorus and potassium nutrition of a tropical waterlily (Nymphaea) used for commercial flower production. <i>Plant and Soil</i> ,1	4.2	
2	Strategies to acquire and use phosphorus in phosphorus-impoverished and fire-prone environments. <i>Plant and Soil</i> ,	4.2	О
1	Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil,	4.2	2