
Jody M. Mason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4367544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Approach to Derive Functional Peptide Inhibitors of Transcription Factor Activity. Jacs Au, 2022, 2, 996-1006.	3.6	5
2	Library-Derived Peptide Aggregation Modulators of Parkinson's Disease Early-Onset α-Synuclein Variants. ACS Chemical Neuroscience, 2022, 13, 1790-1804.	1.7	3
3	InÂvitro single molecule and bulk phase studies reveal the AP-1 transcription factor cFos binds to DNA without its partner cJun. Journal of Biological Chemistry, 2022, 298, 102229.	1.6	1
4	Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer, 2021, 20, 3.	7.9	191
5	Combined computational and intracellular peptide library screening: towards a potent and selective Fra1 inhibitor. RSC Chemical Biology, 2021, 2, 656-668.	2.0	5
6	Designed Î ² -Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. Journal of Medicinal Chemistry, 2021, 64, 3767-3779.	2.9	12
7	Oral (â^')-Epicatechin Inhibits Progressive Tau Pathology in rTg4510 Mice Independent of Direct Actions at GSK3l². Frontiers in Neuroscience, 2021, 15, 697319.	1.4	4
8	A Downsized and Optimised Intracellular Library-Derived Peptide Prevents Alpha-Synuclein Primary Nucleation and Toxicity Without Impacting Upon Lipid Binding. Journal of Molecular Biology, 2021, 433, 167323.	2.0	8
9	Coupling Computational and Intracellular Screening and Selection Toward Co-compatible cJun and cFos Antagonists. Biochemistry, 2020, 59, 530-540.	1.2	2
10	Insights Into Peptide Inhibition of Alpha-Synuclein Aggregation. Frontiers in Neuroscience, 2020, 14, 561462.	1.4	10
11	A series of helical α-synuclein fibril polymorphs are populated in the presence of lipid vesicles. Npj Parkinson's Disease, 2020, 6, 17.	2.5	14
12	Selective antagonism of cJun for cancer therapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 184.	3.5	47
13	The Library Derived 4554W Peptide Inhibits Primary Nucleation of α-Synuclein. Journal of Molecular Biology, 2020, 432, 166706.	2.0	12
14	Abstract 6313: A transcription block survival assay for the discovery of functional inhibitors of transcription factors. , 2020, , .		0
15	Alpha-synuclein structure and Parkinson's disease – lessons and emerging principles. Molecular Neurodegeneration, 2019, 14, 29.	4.4	262
16	Combining Constrained Heptapeptide Cassettes with Computational Design To Create Coiled-Coil Targeting Helical Peptides. ACS Chemical Biology, 2019, 14, 1293-1304.	1.6	10
17	Twists or turns: stabilising alpha <i>vs.</i> beta turns in tetrapeptides. Chemical Science, 2019, 10, 10595-10600.	3.7	6
18	Excitation-Energy-Dependent Molecular Beacon Detects Early Stage Neurotoxic AÎ ² Aggregates in the Presence of Cortical Neurons. ACS Chemical Neuroscience, 2019, 10, 1240-1250.	1.7	8

Jody M. Mason

#	Article	IF	CITATIONS
19	Computational Competitive and Negative Design To Derive a Specific cJun Antagonist. Biochemistry, 2018, 57, 6108-6118.	1.2	11
20	Computational Prediction and Design for Creating Iteratively Larger Heterospecific Coiled Coil Sets. Biochemistry, 2017, 56, 1573-1584.	1.2	23
21	Steady-State Kinetics of α-Synuclein Ferrireductase Activity Identifies the Catalytically Competent Species. Biochemistry, 2017, 56, 2497-2505.	1.2	21
22	Downsizing Proto-oncogene cFos to Short Helix-Constrained Peptides That Bind Jun. ACS Chemical Biology, 2017, 12, 2051-2061.	1.6	43
23	Exploiting Overlapping Advantages of <i>In Vitro</i> and <i>In Cellulo</i> Selection Systems to Isolate a Novel High-Affinity cJun Antagonist. ACS Chemical Biology, 2017, 12, 2579-2588.	1.6	6
24	Deriving Heterospecific Self-Assembling Protein–Protein Interactions Using a Computational Interactome Screen. Journal of Molecular Biology, 2016, 428, 385-398.	2.0	29
25	Downsizing the BAD BH3 peptide to small constrained α-helices with improved ligand efficiency. Organic and Biomolecular Chemistry, 2016, 14, 10939-10945.	1.5	16
26	Correction: Downsizing the BAD BH3 peptide to small constrained \hat{I}_{\pm} -helices with improved ligand efficiency. Organic and Biomolecular Chemistry, 2016, 14, 11525-11525.	1.5	0
27	Intracellular Screening of a Peptide Library to Derive a Potent Peptide Inhibitor of α-Synuclein Aggregation. Journal of Biological Chemistry, 2015, 290, 7426-7435.	1.6	42
28	Toward peptide-based inhibitors as therapies for Parkinson's disease. Future Medicinal Chemistry, 2015, 7, 2103-2105.	1.1	9
29	Library construction, selection and modification strategies to generate therapeutic peptide-based modulators of protein–protein interactions. Future Medicinal Chemistry, 2014, 6, 2073-2092.	1.1	11
30	Retro-inversal of Intracellular Selected β-Amyloid-Interacting Peptides: Implications for a Novel Alzheimer's Disease Treatment. Biochemistry, 2014, 53, 2101-2111.	1.2	17
31	Intracellular selection of peptide inhibitors that target disulphideâ€bridged Aβ ₄₂ oligomers. Protein Science, 2014, 23, 1262-1274.	3.1	8
32	Combining intracellular selection with protein-fragment complementation to derive AÂ interacting peptides. Protein Engineering, Design and Selection, 2013, 26, 463-470.	1.0	15
33	Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1. PLoS ONE, 2013, 8, e59415.	1.1	43
34	The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 311-318.	1.1	10
35	Thermodynamic analysis of Jun-Fos coiled coil peptide antagonists. FEBS Journal, 2011, 278, 663-672.	2.2	20
36	Truncation, Randomization, and Selection. Journal of Biological Chemistry, 2011, 286, 29470-29479.	1.6	32

JODY M. MASON

#	Article	IF	CITATIONS
37	Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention. Future Medicinal Chemistry, 2010, 2, 1813-1822.	1.1	132
38	Electrostatic contacts in the activator protein $\hat{\epsilon}$ coiled coil enhance stability predominantly by decreasing the unfolding rate. FEBS Journal, 2009, 276, 7305-7318.	2.2	2
39	Role of Hydrophobic and Electrostatic Interactions in Coiled Coil Stability and Specificity. Biochemistry, 2009, 48, 10380-10388.	1.2	34
40	Selectional and Mutational Scope of Peptides Sequestering the Jun–Fos Coiled-Coil Domain. Journal of Molecular Biology, 2008, 381, 73-88.	2.0	49
41	iPEP: peptides designed and selected for interfering with protein interaction and function. Biochemical Society Transactions, 2008, 36, 1442-1447.	1.6	13
42	Protein Engineering. Springer Protocols, 2008, , 587-629.	0.1	2
43	Considerations in the Design and Optimization of Coiled Coil Structures. , 2007, 352, 35-70.		29
44	A General Method of Terminal Truncation, Evolution, and Re-Elongation to Generate Enzymes of Enhanced Stability. , 2007, 352, 275-304.		6
45	Improved Stability of the Jun-Fos Activator Protein-1 Coiled Coil Motif. Journal of Biological Chemistry, 2007, 282, 23015-23024.	1.6	39
46	Positive Aspects of Negative Design:  Simultaneous Selection of Specificity and Interaction Stability. Biochemistry, 2007, 46, 4804-4814.	1.2	55
47	Kinetics of an Individual Transmembrane Helix during Bacteriorhodopsin Folding. Journal of Molecular Biology, 2006, 357, 325-338.	2.0	25
48	N-Methylated Peptide Inhibitors of β-Amyloid Aggregation and Toxicity. Optimization of the Inhibitor Structureâ€. Biochemistry, 2006, 45, 9906-9918.	1.2	181
49	Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8989-8994.	3.3	127
50	Low Energy Pathways and Non-native Interactions. Journal of Biological Chemistry, 2005, 280, 40494-40499.	1.6	25
51	Coiled Coil Domains: Stability, Specificity, and Biological Implications. ChemBioChem, 2004, 5, 170-176.	1.3	611
52	Coiled Coil Domains: Stability, Specificity, and Biological Implications. ChemInform, 2004, 35, no.	0.1	0
53	Design strategies for anti-amyloid agents. Current Opinion in Structural Biology, 2003, 13, 526-532.	2.6	126
54	The Influence of Intramolecular Bridges on the Dynamics of a Protein Folding Reaction. Biochemistry, 2002, 41, 12093-12099.	1.2	26

#	Article	IF	CITATIONS
55	Effects of Mutations on the Thermodynamics of a Protein Folding Reaction:Â Implications for the Mechanism of Formation of the Intermediate and Transition Statesâ€. Biochemistry, 2000, 39, 3480-3485.	1.2	37
56	Effects of Core Mutations on the Folding of a β-Sheet Protein:  Implications for Backbone Organization in the I-State. Biochemistry, 1999, 38, 1377-1385.	1.2	86
57	Targeting and Inhibiting Oncogenic Transcription Factors with D- and L-Peptides. , 0, 2007, .		0