Vitor D Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4367242/publications.pdf

Version: 2024-02-01

109 papers

5,579 citations

39 h-index 72 g-index

114 all docs

114 docs citations

times ranked

114

6789 citing authors

#	Article	IF	CITATIONS
1	Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology, 2011, 29, 388-398.	4.9	607
2	Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 2019, 24, 4132.	1.7	559
3	Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv) Tj ETQq1 🛚	1 0,78431 2.5	4 rgBT /Overl 258
4	Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences, 2015, 16, 14832-14849.	1.8	235
5	Polysaccharide-Based Membranes in Food Packaging Applications. Membranes, 2016, 6, 22.	1.4	194
6	Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresource Technology, 2009, 100, 859-865.	4.8	186
7	Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydrate Polymers, 2009, 78, 549-556.	5.1	164
8	Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids, 2018, 74, 139-150.	5.6	155
9	Orange juice concentration by osmotic evaporation and membrane distillation: A comparative study. Journal of Food Engineering, 2006, 74, 125-133.	2.7	129
10	Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydrate Polymers, 2011, 83, 159-165.	5.1	126
11	Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers, 2010, 79, 269-276.	5.1	118
12	Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresource Technology, 2014, 157, 360-363.	4.8	110
13	Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: Evaluation of a microwave-assisted process using response surface methodology. Bioresource Technology, 2010, 101, 3258-3267.	4.8	109
14	Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Frontiers in Microbiology, 2015, 6, 288.	1.5	107
15	Development and characterization of bilayer films of FucoPol and chitosan. Carbohydrate Polymers, 2016, 147, 8-15.	5.1	101
16	Advances in the Application of Microcapsules as Carriers of Functional Compounds for Food Products. Applied Sciences (Switzerland), 2019, 9, 571.	1.3	79
17	Separation of biohydrogen by supported ionic liquid membranes. Desalination, 2009, 240, 311-315.	4.0	76
18	Microbial polysaccharideâ€based membranes: Current and future applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	63

#	Article	IF	CITATIONS
19	Biodegradable Films Based on Gelatin and Papaya Peel Microparticles with Antioxidant Properties. Food and Bioprocess Technology, 2018, 11, 536-550.	2.6	62
20	Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohydrate Polymers, 2010, 79, 981-988.	5.1	60
21	Concentration of Tea Extracts by Osmotic Evaporation: Optimisation of Process Parameters and Effect on Antioxidant Activity. Membranes, 2017, 7, 1.	1.4	60
22	Microencapsulation of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. International Journal of Food Science, 2019, 2019, 1-12.	0.9	57
23	Poly(ionic liquid)-based engineered mixed matrix membranes for CO2/H2 separation. Separation and Purification Technology, 2019, 222, 168-176.	3.9	53
24	Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly(ionic liquid) membranes. Journal of Membrane Science, 2018, 549, 267-274.	4.1	51
25	Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. International Journal of Biological Macromolecules, 2019, 122, 1144-1151.	3.6	50
26	Controlled Production of Exopolysaccharides from Enterobacter A47 as a Function of Carbon Source with Demonstration of Their Film and Emulsifying Abilities. Applied Biochemistry and Biotechnology, 2014, 172, 641-657.	1.4	49
27	Calcium–Alginate–Inulin Microbeads as Carriers for Aqueous Carqueja Extract. Journal of Food Science, 2016, 81, E65-75.	1.5	49
28	Magnetic Responsive PVA Hydrogels for Remote Modulation of Protein Sorption. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21239-21249.	4.0	49
29	Effect of membrane characteristics on mass and heat transfer in the osmotic evaporation process. Journal of Membrane Science, 2004, 228, 159-167.	4.1	47
30	Design of biodegradable composite films for food packaging. Desalination, 2006, 199, 331-333.	4.0	47
31	Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, $2011, 1, 240-245$.	0.6	47
32	Biodegradable films produced from the bacterial polysaccharide FucoPol. International Journal of Biological Macromolecules, 2014, 71, 111-116.	3.6	46
33	Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum as Wall Matrices. Foods, 2020, 9, 718.	1.9	46
34	Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp Carbohydrate Polymers, 2010, 81, 758-764.	5.1	45
35	Kinetics of production and characterization of the fucose-containing exopolysaccharide from Enterobacter A47. Journal of Biotechnology, 2011, 156, 261-267.	1.9	44
36	Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydrate Polymers, 2011, 83, 1582-1590.	5.1	44

#	Article	IF	CITATIONS
37	Preparation and Characterization of Films Based on a Natural P(3HB)/mcl-PHA Blend Obtained through the Co-culture of Cupriavidus Necator and Pseudomonas Citronellolis in Apple Pulp Waste. Bioengineering, 2020, 7, 34.	1.6	44
38	Characterization of multilayered and composite edible films from chitosan and beeswax. Food Science and Technology International, 2015, 21, 83-93.	1.1	41
39	Study of the interactive effect of temperature and pH on exopolysaccharide production by Enterobacter A47 using multivariate statistical analysis. Bioresource Technology, 2012, 119, 148-156.	4.8	40
40	CO 2 $\!\!\!/\!\!\!N$ 2 gas separation using Fe(BTC)-based mixed matrix membranes: A view on the adsorptive and filler properties of metal-organic frameworks. Separation and Purification Technology, 2018, 202, 174-184.	3.9	39
41	Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Process Biochemistry, 2010, 45, 297-305.	1.8	38
42	CO2/H2 separation through poly(ionic liquid)–ionic liquid membranes: The effect of multicomponent gas mixtures, temperature and gas feed pressure. Separation and Purification Technology, 2021, 259, 118113.	3.9	38
43	Tackling Humidity with Designer Ionic Liquidâ€Based Gas Sensing Soft Materials. Advanced Materials, 2022, 34, e2107205.	11.1	38
44	Mass transfer in osmotic evaporation: effect of process parameters. Journal of Membrane Science, 2002, 208, 171-179.	4.1	37
45	Solution properties of an exopolysaccharide from a Pseudomonas strain obtained using glycerol as sole carbon source. Carbohydrate Polymers, 2009, 78, 526-532.	5.1	35
46	Rheological studies of the fucose-rich exopolysaccharide FucoPol. International Journal of Biological Macromolecules, 2015, 79, 611-617.	3.6	35
47	Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants, 2020, 9, 667.	2.2	35
48	Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation. Separation and Purification Technology, 2021, 276, 119303.	3.9	34
49	Characterization of medium chain length polyhydroxyalkanoate produced from olive oil deodorizer distillate. International Journal of Biological Macromolecules, 2016, 82, 243-248.	3.6	33
50	Microencapsulation of Tomato (Solanum lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. Applied Sciences (Switzerland), 2019, 9, 612.	1.3	33
51	Optimisation of gellan gum edible coating for ready-to-eat mango (Mangifera indica L.) bars. International Journal of Biological Macromolecules, 2016, 84, 43-53.	3.6	32
52	Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. International Journal of Biological Macromolecules, 2021, 167, 85-92.	3.6	31
53	Novel mango bars using gellan gum as gelling agent: Rheological and microstructural studies. LWT - Food Science and Technology, 2015, 62, 576-583.	2.5	29
54	Aroma recovery by integration of sweeping gas pervaporation and liquid absorption in membrane contactors. Separation and Purification Technology, 2009, 70, 103-111.	3.9	26

#	Article	IF	Citations
55	Texture, microstructure and consumer preference of mango bars jellified with gellan gum. LWT - Food Science and Technology, 2015, 62, 584-591.	2.5	26
56	Development of bioactive films based on chitosan and Cynara cardunculus leaves extracts for wound dressings. International Journal of Biological Macromolecules, 2020, 163, 1707-1718.	3 . 6	26
57	Influence of temperature on the rheological behavior of a new fucose-containing bacterial exopolysaccharide. International Journal of Biological Macromolecules, 2011, 48, 695-699.	3.6	25
58	Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules, 2017, 104, 1099-1106.	3.6	25
59	Using membrane contactors for fruit juice concentration. Desalination, 2004, 162, 263-270.	4.0	24
60	Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments. Marine Drugs, 2021, 19, 522.	2.2	23
61	Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47. Journal of Biotechnology, 2015, 210, 1-7.	1.9	22
62	Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Materials Science and Engineering C, 2017, 78, 389-397.	3.8	21
63	Composite Coatings of Chitosan and Alginate Emulsions with Olive Oil to Enhance Postharvest Quality and Shelf Life of Fresh Figs (Ficus carica L. cv. †Pingo De Mel†™). Foods, 2021, 10, 718.	1.9	21
64	Assessment of the adhesive properties of the bacterial polysaccharide FucoPol. International Journal of Biological Macromolecules, 2016, 92, 383-389.	3.6	20
65	Bacterial polymers as materials for the development of micro/nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 211-224.	1.8	20
66	Chitin-glucan complex – Based biopolymeric structures using biocompatible ionic liquids. Carbohydrate Polymers, 2020, 247, 116679.	5.1	19
67	Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying. Foods, 2021, 10, 1255.	1.9	19
68	FucoPol and chitosan bilayer films for walnut kernels and oil preservation. LWT - Food Science and Technology, 2018, 91, 34-39.	2.5	18
69	Enzyme-Assisted Extraction of Fruit Juices. , 2018, , 183-200.		18
70	Design of Chitosan and Alginate Emulsion-Based Formulations for the Production of Monolayer Crosslinked Edible Films and Coatings. Foods, 2021, 10, 1654.	1.9	18
71	Study of mass and heat transfer in the osmotic evaporation process using hollow fibre membrane contactors. Journal of Membrane Science, 2007, 289, 249-257.	4.1	17
72	Effect of water activity on carbon dioxide transport in cholinium-based ionic liquids with carbonic anhydrase. Separation and Purification Technology, 2016, 168, 74-82.	3.9	16

#	Article	IF	CITATIONS
73	Effect of film thickness in gelatin hybrid gels for artificial olfaction. Materials Today Bio, 2019, 1, 100002.	2.6	16
74	Novel hydrogels based on yeast chitin-glucan complex: Characterization and safety assessment. International Journal of Biological Macromolecules, 2020, 156, 1104-1111.	3.6	16
75	Design of alumina monoliths by emulsion-gel casting: Understanding the monolith structure from a rheological approach. Materials and Design, 2018, 157, 119-129.	3.3	15
76	Antioxidant activity and phenolic content of extracts from different Pterospartum tridentatum populations growing in Portugal. Procedia Food Science, 2011, 1, 1454-1458.	0.6	13
77	Bacterial Polysaccharides: Production and Applications in Cosmetic Industry., 2015,, 2017-2043.		13
78	Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Pelvetia canaliculata to Sunflower Oil. Foods, 2021, 10, 1732.	1.9	13
79	Application of an Eco-Friendly Antifungal Active Package to Extend the Shelf Life of Fresh Red Raspberry (Rubus idaeus L. cv. â€~Kweli'). Foods, 2022, 11, 1805.	1.9	13
80	Purification of Arabinoxylans from Corn Fiber and Preparation of Bioactive Films for Food Packaging. Membranes, 2020, 10, 95.	1.4	12
81	Ionic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation. Separation and Purification Technology, 2021, 274, 118437.	3.9	11
82	Recovery of lupanine from Lupinus albus L. leaching waters. Separation and Purification Technology, 2010, 74, 38-43.	3.9	10
83	Demonstration of the ability of the bacterial polysaccharide FucoPol to flocculate kaolin suspensions. Environmental Technology (United Kingdom), 2020, 41, 287-295.	1.2	10
84	Cation-mediated gelation of the fucose-rich polysaccharide FucoPol: preparation and characterization of hydrogel beads and their cytotoxicity assessment. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 90-99.	1.8	10
85	Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers, 2022, 14, 785.	2.0	10
86	Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration. Journal of Food Engineering, 2017, 212, 113-120.	2.7	9
87	Microneedle Arrays of Polyhydroxyalkanoate by Laser-Based Micromolding Technique. ACS Applied Bio Materials, 2020, 3, 5856-5864.	2.3	9
88	Impact of Ionic Liquid Structure and Loading on Gas Sorption and Permeation for ZIF-8-Based Composites and Mixed Matrix Membranes. Membranes, 2022, 12, 13.	1.4	9
89	Impact of biopolymer purification on the structural characteristics and transport performance of composite polysaccharide membranes for pervaporation. Journal of Membrane Science, 2015, 493, 179-187.	4.1	8
90	Microbial Conversion of Waste and Surplus Materials into High-Value Added Products: The Case of Biosurfactants., 2017,, 29-77.		8

#	Article	IF	Citations
91	Production and Food Applications of Microbial Biopolymers. Contemporary Food Engineering, 2013, , 61-88.	0.2	8
92	Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging. Membranes, 2021, 11, 321.	1.4	7
93	Bacterial Polysaccharides: Production and Applications in Cosmetic Industry. , 2014, , 1-24.		7
94	Evaluation of the quality of coffee extracts concentrated by osmotic evaporation. Journal of Food Engineering, 2018, 222, 178-184.	2.7	6
95	Development of a Cryoprotective Formula Based on the Fucose-Containing Polysaccharide FucoPol. ACS Applied Bio Materials, 2021, 4, 4800-4808.	2.3	6
96	Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
97	Rendering Banana Plant Residues into a Potentially Commercial Byproduct by Doping Cellulose Films with Phenolic Compounds. Polymers, 2021, 13, 843.	2.0	5
98	Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp Carbohydrate Polymers, 2009, , .	5.1	4
99	Low Temperature Dissolution of Yeast Chitin-Glucan Complex and Characterization of the Regenerated Polymer. Bioengineering, 2020, 7, 28.	1.6	4
100	Development and Characterisation of Arabinoxylan-Based Composite Films. Coatings, 2022, 12, 813.	1.2	4
101	In vitro Shoot Cultures of Pterospartum tridentatum as an Alternative to Wild Plants as a Source of Bioactive Compounds. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	3
102	Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell Encapsulation and Differentiation. Biomacromolecules, 2020, 21, 3081-3091.	2.6	3
103	Heat Treatment and Wounding as Abiotic Stresses to Enhance the Bioactive Composition of Pineapple By-Products. Applied Sciences (Switzerland), 2021, 11, 4313.	1.3	3
104	Comparison of different coating techniques on the properties of FucoPol films. International Journal of Biological Macromolecules, 2017, 103, 268-274.	3.6	2
105	Affinityâ€Triggered Assemblies Based on a Designed Peptide–Peptide Affinity Pair. Biotechnology Journal, 2019, 14, e1800559.	1.8	2
106	Development of cellulose-based polymeric structures using dual functional ionic liquids. RSC Advances, 2021, 11, 39278-39286.	1.7	2
107	Poly(ethylene glycol) Diacrylate longel Membranes Reinforced with Nanoclays for CO2 Separation. Membranes, 2021, 11, 998.	1.4	2
108	Biodegradable Organic Matter. , 2012, , 1-2.		1

ARTICLE IF CITATIONS

109 Biodegradable Membrane., 2012,, 1-2. 0