List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4366993/publications.pdf Version: 2024-02-01

	94269	123241
4,591	37	61
citations	h-index	g-index
142	142	4551
docs citations	times ranked	citing authors
	citations 142	4,59137citationsh-index142142

Ριισλιί Πλττλ

#	Article	IF	CITATIONS
1	Health Risk Assessment of Exposure to Trace Elements from Drinking Black and Green Tea Marketed in Three Countries. Biological Trace Element Research, 2022, 200, 2970-2982.	1.9	14
2	Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. Bioresource Technology, 2022, 344, 126223.	4.8	87
3	Impact of EDDS Dosage on Lead Phytoextraction in Contaminated Urban Residential Soils. Frontiers in Sustainable Cities, 2022, 3, .	1.2	3
4	Health Risk from Toxic Metals in Wild Rice Grown in Copper Mining-Impacted Sediments. Applied Sciences (Switzerland), 2022, 12, 2937.	1.3	4
5	Removal of heavy metals from stormwater runoff using granulated drinking water treatment residuals. Environmental Technology and Innovation, 2022, 28, 102636.	3.0	22
6	Wood mulch coated with iron-based water treatment residuals for the abatement of metals and phosphorus in simulated stormwater runoff. Environmental Technology and Innovation, 2021, 21, 101214.	3.0	10
7	Greening the gray infrastructure: Green adsorbent media for catch basin inserts to remove stormwater pollutants. Environmental Technology and Innovation, 2021, 21, 101334.	3.0	7
8	Nitrate removal uncertainty in stormwater control measures: Is the design or climate a culprit?. Water Research, 2021, 190, 116781.	5.3	29
9	Removal of Antibiotics and Nutrients by Vetiver Grass (Chrysopogon zizanioides) from a Plug Flow Reactor Based Constructed Wetland Model. Toxics, 2021, 9, 84.	1.6	15
10	Differential protein abundance of vetiver grass in response to acid mine drainage. Physiologia Plantarum, 2021, 173, 829-842.	2.6	4
11	Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by aluminum-based drinking water treatment residuals. Journal of Hazardous Materials Letters, 2021, 2, 100034.	2.0	19
12	Evidence for Phytoremediation and Phytoexcretion of NTO from Industrial Wastewater by Vetiver Grass. Molecules, 2021, 26, 74.	1.7	6
13	Anti-inflammatory Effects of Northern Highbush Blueberry Extract on an <i>In Vitro</i> Inflammatory Bowel Disease Model. Nutrition and Cancer, 2020, 72, 1178-1190.	0.9	5
14	Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Chemosphere, 2020, 240, 124961.	4.2	15
15	Is Arsenic in Rice a Major Human Health Concern?. Current Pollution Reports, 2020, 6, 37-42.	3.1	45
16	Removal of tetracycline and ciprofloxacin from wastewater by vetiver grass (Chrysopogon) Tj ETQq0 0 0 rgBT /Ov Pollution Research, 2020, 27, 34951-34965.	verlock 10 2.7) Tf 50 147 T 22
17	Growing Biofuel Feedstocks in Copper-Contaminated Soils of a Former Superfund Site. Applied Sciences (Switzerland), 2020, 10, 1499.	1.3	3

¹⁸Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary
wastewater effluent. International Journal of Phytoremediation, 2020, 22, 764-773.1.726

#	Article	IF	CITATIONS
19	Evaluation of Copper-Contaminated Marginal Land for the Cultivation of Vetiver Grass (Chrysopogon) Tj ETQq1 1	0.784314	rgBT /Overl 3
19	Applied Sciences (Switzerland), 2019, 9, 2685.	1.0	0
20	Uptake and transformation of ciprofloxacin by vetiver grass (Chrysopogon zizanioides). International Biodeterioration and Biodegradation, 2019, 142, 200-210.	1.9	30
21	A combined chemical and phytoremediation method for reclamation of acid mine drainage–impacted soils. Environmental Science and Pollution Research, 2019, 26, 14414-14425.	2.7	26
22	Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): A multiscale long-term study. Ecological Engineering, 2019, 129, 97-108.	1.6	46
23	Anti-inflammatory and immune-modulating effects of rice callus suspension culture (RCSC) and bioactive fractions in an in vitro inflammatory bowel disease model. Phytomedicine, 2019, 57, 364-376.	2.3	5
24	Disentanglement of the secrets of aluminium in acidophilic tea plant (Camellia sinensis L.) influenced by organic and inorganic amendments. Food Research International, 2019, 120, 851-864.	2.9	16
25	Removal of Acidity and Metals from Acid Mine Drainage-Impacted Water using Industrial Byproducts. Environmental Management, 2019, 63, 148-158.	1.2	21
26	Heavy Metal Pollution and Remediation. , 2018, , 359-373.		76
27	Community response to a sustainable restoration plan for a superfund site. Environmental Science and Pollution Research, 2018, 25, 16959-16968.	2.7	1
28	Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress. Chemosphere, 2018, 193, 903-911.	4.2	41
29	Assessment of water treatment residuals as sorbent material in permeable reactive barriers: Application to a copperâ€contaminated site. Remediation, 2018, 29, 45-51.	1.1	4
30	Bio-Buffering to Combat Ocean Acidification?. Current Pollution Reports, 2018, 4, 283-284.	3.1	1
31	Preliminary studies on potential remediation of acid mine drainageâ€impacted soils by amendment with drinkingâ€water treatment residuals. Remediation, 2018, 28, 75-82.	1.1	6
32	Removal of prometryn from hydroponic media using marsh pennywort (<i>Hydrocotyle vulgaris</i>) Tj ETQq0 0 C) rgBT /Ove £7	erlock 10 Tf
33	Vetiver grass (Chrysopogon zizanioides) is capable of removing insensitive high explosives from munition industry wastewater. Chemosphere, 2018, 209, 920-927.	4.2	37
34	Assessment of Soil and Water Contamination at the Tab-Simco Coal Mine: A Case Study. Mine Water and the Environment, 2017, 36, 248-254.	0.9	13
35	Proteomic profiling of vetiver grass (<i>Chrysopogon zizanioides</i>) under 2,4,6â€ŧrinitrotoluene (TNT) stress. GeoHealth, 2017, 1, 66-74.	1.9	4
36	Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Environmental Pollution, 2017, 225, 524-533.	3.7	53

#	Article	IF	CITATIONS
37	Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 243-251.	1.1	24
38	A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). Environmental Science and Pollution Research, 2017, 24, 27985-27993.	2.7	23
39	Evidence for exocellular Arsenic in Fronds of Pteris vittata. Scientific Reports, 2017, 7, 2839.	1.6	27
40	Kinetics of nitroreductase-mediated phytotransformation of TNT in vetiver grass. International Journal of Environmental Science and Technology, 2017, 14, 187-192.	1.8	5
41	Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere, 2016, 157, 33-41.	4.2	56
42	Tetracycline uptake and metabolism by vetiver grass (Chrysopogon zizanioides L. Nash). Environmental Science and Pollution Research, 2016, 23, 24880-24889.	2.7	19
43	Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis. Scientific Reports, 2016, 6, 21733.	1.6	35
44	Effects of biosolids and compost amendment on chemistry of soils contaminated with copper from mining activities. Environmental Monitoring and Assessment, 2016, 188, 176.	1.3	21
45	Identification of Biochemical Pathways Associated with Lead Tolerance and Detoxification in <i>Chrysopogon zizanioides</i> L. Nash (Vetiver) by Metabolic Profiling. Environmental Science & Technology, 2016, 50, 2530-2537.	4.6	62
46	Uptake of 2,4-bis(Isopropylamino)-6-methylthio-s-triazine by Vetiver Grass (Chrysopogon zizanioides L.) from Hydroponic Media. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 550-555.	1.3	11
47	Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals. Environmental Science and Pollution Research, 2016, 23, 3322-3332.	2.7	8
48	Adsorption of arsenic(V) from aqueous solutions by goethite/silica nanocomposite. International Journal of Environmental Science and Technology, 2015, 12, 3905-3914.	1.8	28
49	Urea-facilitated uptake and nitroreductase-mediated transformation of 2,4,6-trinitrotoluene in soil using vetiver grass. Journal of Environmental Chemical Engineering, 2015, 3, 445-452.	3.3	13
50	Surface complexation of antimony on kaolinite. Chemosphere, 2015, 119, 349-354.	4.2	33
51	Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals. Environmental Science and Pollution Research, 2015, 22, 7508-7518.	2.7	16
52	Phytoremediation of Explosive-Contaminated Soils. Current Pollution Reports, 2015, 1, 23-34.	3.1	37
53	Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiology and Biochemistry, 2015, 97, 390-399.	2.8	48
54	Drinking Water Treatment Residual Amendment Lowers Inorganic Arsenic Bioaccessibility in Contaminated soils: a Long-Term Study. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	21

#	Article	IF	CITATIONS
55	Remediation of Acid Mine Drainage-Impacted Water. Current Pollution Reports, 2015, 1, 131-141.	3.1	133
56	Sorghum as a Biological Model for Studying the Effect of Microbial Interactions on Growth and Metabolic Activity in Miningâ€Impacted Soil. FASEB Journal, 2015, 29, LB206.	0.2	0
57	Kinetics of oxytetracycline sorption on magnetite nanoparticles. International Journal of Environmental Science and Technology, 2014, 11, 1207-1214.	1.8	11
58	Arsenic bioaccessibility and speciation in the soils amended with organoarsenicals and drinking-water treatment residuals based on a long-term greenhouse study. Journal of Hydrology, 2014, 518, 477-485.	2.3	19
59	Integrated Metabolomic and Proteomic Approaches Dissect the Effect of Metal-Resistant Bacteria on Maize Biomass and Copper Uptake. Environmental Science & Technology, 2014, 48, 1184-1193.	4.6	69
60	Surface Complexation of Oxytetracycline by Magnetite: Effect of Solution Properties. Vadose Zone Journal, 2014, 13, 1-10.	1.3	24
61	Effectiveness of urea in enhancing the extractability of 2,4,6-trinitrotoluene from chemically variant soils. Chemosphere, 2013, 93, 1811-1817.	4.2	7
62	Inorganic arsenic sorption by drinking-water treatment residual-amended sandy soil: effect of soil solution chemistry. International Journal of Environmental Science and Technology, 2013, 10, 1-10.	1.8	12
63	Human health risk from arsenical pesticide contaminated soils: A long-term greenhouse study. Journal of Hazardous Materials, 2013, 262, 1031-1038.	6.5	25
64	Mechanisms of ciprofloxacin removal by nano-sized magnetite. Journal of Hazardous Materials, 2013, 246-247, 221-226.	6.5	148
65	PHYTOREMEDIATION POTENTIAL OF VETIVER GRASS [<i>CHRYSOPOGON ZIZANIOIDES (L.)</i>] FOR TETRACYCLINE. International Journal of Phytoremediation, 2013, 15, 343-351.	1.7	68
66	In Situ Attenuated Total Reflectance Fourier-Transform Infrared Study of Oxytetracycline Sorption on Magnetite. Journal of Environmental Quality, 2013, 42, 822-827.	1.0	27
67	Effectiveness of Aluminum-based Drinking Water Treatment Residuals as a Novel Sorbent to Remove Tetracyclines from Aqueous Medium. Journal of Environmental Quality, 2013, 42, 1449-1459.	1.0	55
68	Lead and Phytoremediation. , 2013, , 1161-1166.		0
69	Effects of soil types and forms of arsenical pesticide on rice growth and development. International Journal of Environmental Science and Technology, 2011, 8, 445-460.	1.8	30
70	Antimony sorption at gibbsite–water interface. Chemosphere, 2011, 84, 480-483.	4.2	85
71	Changes in arsenic fractionation, bioaccessibility and speciation in organo-arsenical pesticide amended soils as a function of soil aging. Chemosphere, 2011, 84, 1563-1571.	4.2	28
72	Predicting potentially plant-available lead in contaminated residential sites. Environmental Monitoring and Assessment, 2011, 175, 661-676.	1.3	7

#	Article	IF	CITATIONS
73	Exchangeable lead from prediction models relates to vetiver lead uptake in different soil types. Environmental Monitoring and Assessment, 2011, 183, 571-579.	1.3	2
74	Greenhouse Study on the Phytoremediation Potential of Vetiver Grass, Chrysopogon zizanioides L., in Arsenic-Contaminated Soils. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 124-128.	1.3	33
75	Antioxidant Enzymes Response in Vetiver Grass: A Greenhouse Study for Chelantâ€Assisted Phytoremediation of Leadâ€Contaminated Residential Soils. Clean - Soil, Air, Water, 2011, 39, 428-436.	0.7	19
76	Alternative amendment for soluble phosphorus removal from poultry litter. Environmental Science and Pollution Research, 2010, 17, 195-202.	2.7	10
77	Organocopper complexes during roxarsone degradation in wastewater lagoons. Environmental Science and Pollution Research, 2010, 17, 1167-1173.	2.7	18
78	Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant and Soil, 2010, 326, 171-185.	1.8	65
79	Vetiver grass is capable of removing TNT from soil in the presence of urea. Environmental Pollution, 2010, 158, 1980-1983.	3.7	60
80	Chelantâ€assisted Phytostabilization of Paintâ€contaminated Residential Sites. Clean - Soil, Air, Water, 2010, 38, 803-811.	0.7	6
81	Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Journal of Hazardous Materials, 2010, 177, 465-474.	6.5	139
82	Lead fractionation and bioaccessibility in contaminated soils with variable chemical properties. Chemical Speciation and Bioavailability, 2010, 22, 215-225.	2.0	19
83	Effect of soil aging on arsenic fractionation and bioaccessibility in inorganic arsenical pesticide contaminated soils. Applied Geochemistry, 2010, 25, 1422-1430.	1.4	36
84	Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals. Chemosphere, 2010, 78, 1028-1035.	4.2	101
85	Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites. Journal of Environmental Monitoring, 2010, 12, 399-403.	2.1	22
86	Induction of Leadâ€Binding Phytochelatins in Vetiver Grass [<i>Vetiveria zizanioides</i> (L.)]. Journal of Environmental Quality, 2009, 38, 868-877.	1.0	57
87	Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environmental Pollution, 2009, 157, 2173-2183.	3.7	84
88	Bioavailability and Bioaccessibility of Arsenic in a Soil Amended with Drinking-Water Treatment Residuals. Archives of Environmental Contamination and Toxicology, 2009, 57, 755-766.	2.1	33
89	X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual. Journal of Hazardous Materials, 2009, 171, 980-986.	6.5	43
90	Do lagoons near concentrated animal feeding operations promote nitrous oxide supersaturation?. Environmental Pollution, 2009, 157, 1957-1960.	3.7	3

#	Article	IF	CITATIONS
91	Nitrous oxide supersaturation at the liquid/air interface of animal waste. Environmental Pollution, 2009, 157, 3508-3513.	3.7	1
92	Chelant-aided enhancement of lead mobilization in residential soils. Environmental Pollution, 2008, 156, 1139-1148.	3.7	42
93	Novel colorimetric method overcoming phosphorus interference during trace arsenic analysis in soil solution. Analyst, The, 2008, 133, 191-196.	1.7	9
94	In Vitro Model Improves the Prediction of Soil Arsenic Bioavailability: Worst-Case Scenario. Environmental Science & Technology, 2008, 42, 6278-6284.	4.6	25
95	Fate of Arsenic in Swine Waste from Concentrated Animal Feeding Operations. Journal of Environmental Quality, 2008, 37, 1626-1633.	1.0	76
96	Controlling the Fate of Roxarsone and Inorganic Arsenic in Poultry Litter. Journal of Environmental Quality, 2008, 37, 963-971.	1.0	31
97	Chapter 34 Current trends and future directions in environmental geochemistry research. Developments in Environmental Science, 2007, , 753-757.	0.5	2
98	Chapter 25 Remediation of arsenical pesticide applied soils using water treatment residuals: Preliminary greenhouse results. Developments in Environmental Science, 2007, 5, 543-559.	0.5	1
99	Chapter 15 Effects of incubation time and arsenic load on arsenic bioaccessibility in three Florida soils amended with sodium arsenate. Developments in Environmental Science, 2007, , 327-343.	0.5	0
100	Chapter 16 A greenhouse study on soil-arsenic forms and their bioaccessibility in two chemically variant Florida soils amended with sodium arsenate pesticide: Preliminary results. Developments in Environmental Science, 2007, , 345-362.	0.5	1
101	Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 2007, 33, 164-169.	4.8	61
102	High uptake of 2,4,6-trinitrotoluene by vetiver grass – Potential for phytoremediation?. Environmental Pollution, 2007, 146, 1-4.	3.7	63
103	Arsenic immobilization in soils amended with drinking-water treatment residuals. Environmental Pollution, 2007, 146, 414-419.	3.7	73
104	Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides. Environmental Pollution, 2007, 148, 101-106.	3.7	39
105	Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy. Journal of Colloid and Interface Science, 2007, 311, 544-550.	5.0	37
106	Response to letter to the editor re: Datta et al., 2006 (Boyce et al.). Science of the Total Environment, 2007, 388, 376-378.	3.9	1
107	Arsenic Fractionation and Bioaccessibility in Two Alkaline Texas Soils Incubated with Sodium Arsenate. Archives of Environmental Contamination and Toxicology, 2007, 52, 475-482.	2.1	19
108	Arsenic Bioaccessibility in a Soil Amended with Drinking-Water Treatment Residuals in the Presence of Phosphorus Fertilizer. Archives of Environmental Contamination and Toxicology, 2007, 53, 329-336.	2.1	26

#	Article	IF	CITATIONS
109	Chaotropic effects on 2,4,6-trinitrotoluene uptake by wheat (Triticum aestivum). Plant and Soil, 2007, 295, 229-237.	1.8	6
110	Using Nitrogen and Carbon Dioxide Molecules To Probe Arsenic(V) Bioaccessibility in Soils. Environmental Science & Technology, 2006, 40, 7732-7738.	4.6	4
111	Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere, 2006, 64, 730-741.	4.2	125
112	Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere, 2006, 65, 591-598.	4.2	182
113	Aluminum-based drinking-water treatment residuals: A novel sorbent for perchlorate removal. Environmental Pollution, 2006, 140, 9-12.	3.7	86
114	Effect of Sewage Sludge Addition on Soil Quality in Terms of Metal Concentrations. Bulletin of Environmental Contamination and Toxicology, 2006, 76, 823-830.	1.3	0
115	Effects of Sewage Sludge Disposal on Metal Content in the Sediment and Water of Mitchell Lake, San Antonio, Texas, USA. Bulletin of Environmental Contamination and Toxicology, 2006, 77, 104-111.	1.3	1
116	Effects of Remedial Treatment on Phosphorus Availability in an Arsenical Pesticide Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, 2006, 77, 297-304.	1.3	0
117	Lead in Soils in Paint Contaminated Residential Sites at San Antonio, Texas, and Baltimore, Maryland. Bulletin of Environmental Contamination and Toxicology, 2006, 77, 643-650.	1.3	20
118	Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: An incubation study. Science of the Total Environment, 2006, 372, 39-48.	3.9	32
119	Consideration of Soil Properties in Assessment of Human Health Risk from Exposure to Arsenic-Enriched Soils. Integrated Environmental Assessment and Management, 2005, 1, 55.	1.6	22
120	Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils Chemosphere, 2005, 60, 188-195.	4.2	38
121	Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution, 2005, 136, 187-195.	3.7	308
122	Arsenic Concentration and Bioavailability in Soils as a Function of Soil Properties. , 2005, , 77-93.		2
123	Arsenic geochemistry in three soils contaminated with sodium arsenite pesticide: An incubation study. Environmental Geosciences, 2004, 11, 87-97.	0.6	17
124	Arsenic Fate and Bioavailability in Two Soils Contaminated with Sodium Arsenate Pesticide: An Incubation Study. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 240-247.	1.3	25
125	Distribution of Arsenic in Chemically Variant Dipping Vat Site Soils. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 838-845.	1.3	3
126	Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: An overview. Environmental Geosciences, 2004, 11, 53-63.	0.6	42

#	Article	IF	CITATIONS
127	Human Health Risks from Arsenic in Soils: Does One Model Fit All. Archives of Environmental Health, 2004, 59, 337-341.	0.4	8
128	A modified in-vitro method to assess bioavailable arsenic in pesticide-applied soils. Environmental Pollution, 2003, 126, 363-366.	3.7	31
129	Starch Biosynthesis during Pollen Maturation Is Associated with Altered Patterns of Gene Expression in Maize. Plant Physiology, 2002, 130, 1645-1656.	2.3	205
130	Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Molecular Biology, 2002, 49, 15-29.	2.0	62
131	Sugar-regulated control of α-tubulin in maize cell suspension culture. Plant Cell Reports, 2001, 20, 262-266.	2.8	10
132	Gene-expression analysis of sucrose-starch metabolism during pollen maturation in cytoplasmic male-sterile and fertile lines of sorghum. Sexual Plant Reproduction, 2001, 14, 127-134.	2.2	45
133	Title is missing!. Water, Air, and Soil Pollution, 2001, 130, 1127-1132.	1.1	8
134	Temporal and spatial regulation of nitrate reductase and nitrite reductase in greening maize leaves. Plant Science, 1999, 144, 77-83.	1.7	40
135	Stress-Mediated Enhancement of β-Amylase Activity in Pearl Millet and Maize Leaves is Dependent on Light. Journal of Plant Physiology, 1999, 154, 657-664.	1.6	23
136	Sugar Mimics the Light-Meditated β-Amylase Induction and Distribution in Maize and Pearl Millet Leaves. Journal of Plant Physiology, 1999, 154, 665-672.	1.6	2
137	Amylases synthesis in scutellum and aleurone layer of maize seeds. Phytochemistry, 1998, 49, 657-666.	1.4	25