List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4366786/publications.pdf Version: 2024-02-01

		76196	123241
133	4,672 citations	40	61
papers	citations	h-index	g-index
133	133	133	3624
155	155	155	3024
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly enhanced adsorption performance to uranium(VI) by facile synthesized hydroxyapatite aerogel. Journal of Hazardous Materials, 2022, 423, 127184.	6.5	97
2	Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. Journal of Hazardous Materials, 2022, 422, 126912.	6.5	49
3	Three-dimensional C3N5/RGO aerogels with enhanced visible-light response and electron-hole separation efficiency for photocatalytic uranium reduction. Chemical Engineering Journal, 2022, 427, 131773.	6.6	56
4	Hydrous titanium oxide and bayberry tannin co-immobilized nano collagen fibrils for uranium extraction from seawater and recovery from nuclear wastewater. Chemosphere, 2022, 286, 131626.	4.2	17
5	Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction. Journal of Hazardous Materials, 2022, 423, 126935.	6.5	48
6	Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. Journal of Hazardous Materials, 2022, 423, 127190.	6.5	46
7	Sponge-inspired reassembly of 3D hydrolyzed collagen aerogel with polyphenol-functionalization for ultra-capturing iodine from airborne effluents. Chemical Engineering Journal, 2022, 428, 131322.	6.6	28
8	Au atoms doped in Ti3C2Tx MXene: Benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation. Nano Research, 2022, 15, 2862-2869.	5.8	25
9	Interface assembly of specific recognition gripper wrapping on activated collagen fiber for synergistic capture effect of iodine. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112216.	2.5	16
10	Preparation of novel porous Al ₂ O ₃ –SiO ₂ nanocomposites via solution-freeze-drying-calcination method for the efficient removal of uranium in solution. Nanotechnology, 2022, 33, 095705.	1.3	1
11	Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction. Nano Research, 2022, 15, 2943-2951.	5.8	14
12	Enhanced uranium photoreduction on Ti3C2Tx MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. Journal of Hazardous Materials, 2022, 426, 127823.	6.5	38
13	Synthesis of Uranium Single Atom from Radioactive Wastewater for Enhanced Water Dissociation and Hydrogen Evolution. Small, 2022, 18, e2107444.	5.2	17
14	Sulfur edge in molybdenum disulfide nanosheets achieves efficient uranium binding and electrocatalytic extraction in seawater. Nanoscale, 2022, 14, 6285-6290.	2.8	16
15	Synthesis of Uranium Single Atom from Radioactive Wastewater for Enhanced Water Dissociation and Hydrogen Evolution (Small 11/2022). Small, 2022, 18, .	5.2	0
16	Semiconducting Metal–Organic Frameworks Decorated with Spatially Separated Dual Cocatalysts for Efficient Uranium(VI) Photoreduction. Advanced Functional Materials, 2022, 32, .	7.8	94
17	Constructing hotspots through star-shaped gold-copper alloy nanocrystals for laser initiation of explosives. Optics and Laser Technology, 2022, 152, 108120.	2.2	1
18	Elemental Doping Induced Sulfur Vacancies Enable Efficient Electrochemical Reduction of CO ₂ over CdS Nanorods. Journal of Physical Chemistry C, 2022, 126, 102-109.	1.5	12

#	Article	IF	CITATIONS
19	Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen. Physical Chemistry Chemical Physics, 2022, 24, 11491-11495.	1.3	2
20	Construction of novel magnesium oxide aerogel for highly efficient separation of uranium(VI) from wastewater. Separation and Purification Technology, 2022, 295, 121296.	3.9	8
21	Design and preparation of core–shell AP@HNS composites with high safety and excellent thermal decomposition performance. RSC Advances, 2022, 12, 15329-15336.	1.7	1
22	Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467, 214615.	9.5	170
23	Design of a renewable hydroxyapatite-biocarbon composite for the removal of uranium(VI) with high-efficiency adsorption performance. Biochar, 2022, 4, .	6.2	16
24	Highly efficient uranium capture from wastewater by hydroxyapatite aerogels prepared with konjac gum as template. Journal of Water Process Engineering, 2022, 48, 102919.	2.6	14
25	Highly efficient adsorptive extraction of uranium from wastewater by novel kaolin aerogel. Science of the Total Environment, 2022, 842, 156916.	3.9	18
26	Encapsulating carbon-coated nano zero-valent iron particles with biomass-derived carbon aerogel for efficient uranium extraction from uranium-containing wastewater. Journal of Cleaner Production, 2022, 364, 132654.	4.6	58
27	Achieving efficient photocatalytic uranium extraction within a record short period of 3Âmin by Up-conversion erbium doped ZnO nanosheets. Chemical Engineering Journal, 2022, 450, 138044.	6.6	22
28	In-situ oxidized tungsten disulfide nanosheets achieve ultrafast photocatalytic extraction of uranium through hydroxyl-mediated binding and reduction. Nano Research, 2022, 15, 8810-8818.	5.8	11
29	Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering. Chemical Engineering Journal, 2021, 406, 126791.	6.6	91
30	A novel effect of combining microorganisms and graphene oxide for solidifying simulated nuclides strontium. Journal of Environmental Radioactivity, 2021, 227, 106507.	0.9	1
31	Harmonizing the energy band between adsorbent and semiconductor enables efficient uranium extraction. Chemical Engineering Journal, 2021, 420, 127645.	6.6	24
32	Regulation of Active Oxygen Species by Grain Boundaries to Optimize Reaction Paths toward Aerobic Oxidations. Energy and Environmental Materials, 2021, 4, 444-450.	7.3	0
33	Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. Journal of Materials Chemistry A, 2021, 9, 9809-9814.	5.2	30
34	<i>In situ</i> synthesis of oxidized MXene-based metal cobalt spinel nanocomposites for an excellent promotion in thermal decomposition of ammonium perchlorate. Inorganic Chemistry Frontiers, 2021, 8, 4864-4877.	3.0	10
35	Efficient Photocatalytic Extraction of Uranium over Ethylenediamine Capped Cadmium Sulfide Telluride Nanobelts. ACS Applied Materials & Interfaces, 2021, 13, 11968-11976.	4.0	32
36	Beaded segments like bi-metallic nano-zero-valent iron-titanium for the fast and efficient adsorption and reduction of U(VI) in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126080.	2.3	5

#	Article	IF	CITATIONS
37	Space and structure activation of collagen fiber for high efficient capture iodine in off-gas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126389.	2.3	17
38	Synergistically electronic tuning of metalloid CdSe nanorods for enhanced electrochemical CO2 reduction. Science China Materials, 2021, 64, 2997-3006.	3.5	20
39	Boosting the oxygen evolution activity over cobalt nitride nanosheets through optimizing the electronic configuration. Applied Catalysis B: Environmental, 2021, 286, 119894.	10.8	56
40	Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Applied Catalysis B: Environmental, 2021, 288, 119978.	10.8	59
41	Making Waste Profitable: Yak Dung Derived Carbon for High-Performance Supercapacitors. Nano, 2021, 16, 2150087.	0.5	4
42	Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering. Chemical Engineering Journal, 2021, 416, 129164.	6.6	78
43	Efficient removal of uranium (VI) by nano-manganese oxide materials: A synthetic experimental and mechanism studies. Journal of Alloys and Compounds, 2021, 868, 159069.	2.8	19
44	Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control. Journal of Environmental Chemical Engineering, 2021, 9, 105397.	3.3	13
45	Atomic-level insights into the activation of nitrogen via hydrogen-bond interaction toward nitrogen photofixation. CheM, 2021, 7, 2118-2136.	5.8	33
46	Large-scale synthesis of metal nanosheets as highly active catalysts: Combining accumulative roll-bonding and etching process. Frontiers of Materials Science, 2021, 15, 456-464.	1.1	1
47	Uranium uptake from wastewater by the novel MnxTi1-xOy composite materials: Performance and mechanism. Environmental Pollution, 2021, 284, 117392.	3.7	14
48	Surface Oxygen Injection in Tin Disulfide Nanosheets for Efficient CO2 Electroreduction to Formate and Syngas. Nano-Micro Letters, 2021, 13, 189.	14.4	36
49	Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 2021, 420, 126547.	6.5	101
50	Heavy metal fixation of lead-contaminated soil using Morchella mycelium. Environmental Pollution, 2021, 289, 117829.	3.7	11
51	Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI). Chemical Engineering Journal, 2021, 426, 130756.	6.6	42
52	Design of 3D alumina-doped magnesium oxide aerogels with a high efficiency removal of uranium(<scp>vi</scp>) from wastewater. Inorganic Chemistry Frontiers, 2021, 8, 2561-2574.	3.0	20
53	High efficiency adsorption of uranium in solution with magnesium oxide embedded horse manure-derived biochar. Journal of Environmental Chemical Engineering, 2021, 9, 106897.	3.3	13
54	Efficient extraction of uranium in organics-containing wastewater over g-C3N4/GO hybrid nanosheets with type-II band structure. Journal of Hazardous Materials, 2020, 384, 121383.	6.5	79

#	Article	IF	CITATIONS
55	Boosting the Loading of Metal Single Atoms via a Bioconcentration Strategy. Small, 2020, 16, e1905920.	5.2	40
56	Nano-zero-valent Fe/Ni particles loaded on collagen fibers immobilized by bayberry tannin as an effective reductant for uranyl in aqueous solutions. Applied Surface Science, 2020, 507, 145075.	3.1	43
57	Konjac glucomannan-derived nitrogen-containing layered microporous carbon for high-performance supercapacitors. New Journal of Chemistry, 2020, 44, 1400-1406.	1.4	7
58	Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(VI) adsorption. Bioresource Technology, 2020, 298, 122576.	4.8	53
59	Mesoporous MnO ₂ /SBA-15 as a synergetic adsorbent for enhanced uranium adsorption. New Journal of Chemistry, 2020, 44, 13707-13715.	1.4	12
60	Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. Journal of Materials Chemistry A, 2020, 8, 18318-18326.	5.2	37
61	High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catalysis, 2020, 10, 11280-11306.	5.5	308
62	Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation. Nature Communications, 2020, 11, 4251.	5.8	81
63	Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Applied Catalysis B: Environmental, 2020, 273, 119072.	10.8	86
64	Adsorption of Lead (II) from Aqueous Solution with High Efficiency by Hydrothermal Biochar Derived from Honey. International Journal of Environmental Research and Public Health, 2020, 17, 3441.	1.2	15
65	Interaction between Graphene Oxide and the Mycelia ofMorchella sextelata. Nano, 2020, 15, 2050035.	0.5	0
66	Bio-Inspired Biomass-Derived Carbon Aerogels with Superior Mechanical Property for Oil–Water Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6458-6465.	3.2	61
67	Decoration of In nanoparticles on In ₂ S ₃ nanosheets enables efficient electrochemical reduction of CO ₂ . Chemical Communications, 2020, 56, 4212-4215.	2.2	30
68	Porous CuFe for Plasmon-Assisted N ₂ Photofixation. ACS Energy Letters, 2020, 5, 2444-2451.	8.8	35
69	Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun. Journal of Hazardous Materials, 2020, 392, 122350.	6.5	119
70	Mineralization Mechanism of Mineralization Bacteria on Strontium Crystallization of Simulated Radionuclides. Crystal Research and Technology, 2020, 55, 1900133.	0.6	5
71	Fe Single-Atom Catalyst for Visible-Light-Driven Photofixation of Nitrogen Sensitized by Triphenylphosphine and Sodium Iodide. ACS Catalysis, 2020, 10, 5502-5510.	5.5	51
72	Biomass-derived composite aerogels with novel structure for removal/recovery of uranium from simulated radioactive wastewater. Nanotechnology, 2019, 30, 455602.	1.3	47

#	Article	IF	CITATIONS
73	Atomic-level insights in tuning defective structures for nitrogen photofixation over amorphous SmOCl nanosheets. Nano Energy, 2019, 65, 104003.	8.2	36
74	Ultra-high nitrogen content biomass carbon supercapacitors and nitrogen forms analysis. Journal of Alloys and Compounds, 2019, 809, 151664.	2.8	36
75	Understanding the interfacial interactions of bioinspired chitosan-calcite nanocomposites by first principles molecular dynamics simulations and experimental FT-IR spectroscopy. Carbohydrate Polymers, 2019, 223, 115054.	5.1	9
76	Supercapacitors with high nitrogen content by cage-like Ganoderma lucidum spore. Applied Surface Science, 2019, 494, 230-238.	3.1	17
77	Pressure-induced variation of structural, elastic, vibrational, thermodynamic properties and hardness of C11N4 polymorphs. Results in Physics, 2019, 14, 102453.	2.0	3
78	<i>Marinobacter</i> sp. Stable Hydrous Titanium Oxide-Functionalized Bovine Serum Albumin Nanospheres for Uranium Capture from Spiked Seawater. ACS Applied Materials & Interfaces, 2019, 11, 40898-40908.	4.0	24
79	Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control. Bioresource Technology, 2019, 294, 122142.	4.8	44
80	A strategy of making waste profitable: Nitrogen doped cigarette butt derived carbon for high performance supercapacitors. Energy, 2019, 189, 116241.	4.5	35
81	Hybridization of Defective Tin Disulfide Nanosheets and Silver Nanowires Enables Efficient Electrochemical Reduction of CO ₂ into Formate and Syngas. Small, 2019, 15, e1904882.	5.2	39
82	Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation. Advanced Energy Materials, 2019, 9, 1902319.	10.2	88
83	One-step synthesis of nitrogen-doped wood derived carbons as advanced electrodes for supercapacitor applications. New Journal of Chemistry, 2019, 43, 3649-3652.	1.4	24
84	Bioconcentration and bioassembly of N/S co-doped carbon with excellent stability for supercapacitors. Applied Surface Science, 2019, 488, 316-325.	3.1	68
85	Waste cigarette filters: activated carbon as a novel sorbent for uranium removal. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320, 725-731.	0.7	26
86	Nano-Montmorillonite Regulated Crystallization of Hierarchical Strontium Carbonate in a Microbial Mineralization System. Materials, 2019, 12, 1392.	1.3	8
87	Bio-inspired and assembled fungal hyphae/carbon nanotubes aerogel for water-oil separation. Nanotechnology, 2019, 30, 275601.	1.3	10
88	Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater. Chemical Engineering Journal, 2019, 364, 139-145.	6.6	47
89	Communication—Porous Activated Carbon from Amorphophallus Konjac by One Step Method for High Performance Supercapacitors. Journal of the Electrochemical Society, 2019, 166, A623-A625.	1.3	3
90	Photocatalysis: Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation (Adv. Energy Mater. 43/2019). Advanced Energy Materials, 2019, 9, 1970170.	10.2	6

#	Article	IF	CITATIONS
91	Procedural growth of fungal hyphae/Fe3O4/graphene oxide as ordered-structure composites for water purification. Chemical Engineering Journal, 2019, 355, 777-783.	6.6	59
92	Ternary Ag nanoparticles/natural-magnetic SiO2-nanowires/reduced graphene oxide nanocomposites with highly visible photocatalytic activity for 4-nitrophenol reduction. SN Applied Sciences, 2019, 1, 1.	1.5	5
93	Effect of phase evolution and acidity on the chemical stability of Zr1-Nd SiO4-/2 ceramics. Ceramics International, 2019, 45, 3052-3058.	2.3	10
94	Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation. Applied Surface Science, 2018, 444, 355-363.	3.1	48
95	Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal. Chemical Engineering Journal, 2018, 347, 407-414.	6.6	92
96	Porous biochar generated from natural Amorphophallus konjac for high performance supercapacitors. Applied Surface Science, 2018, 448, 16-22.	3.1	33
97	One step hydrothermal synthesis of 3D CoS ₂ @MoS ₂ -NG for high performance supercapacitors. Nanotechnology, 2018, 29, 29LT01.	1.3	16
98	Bioconcentration of organic dyes <i>via</i> fungal hyphae and their derived carbon fibers for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10710-10717.	5.2	54
99	Environment-friendly bio-materials based on cotton-carbon aerogel for strontium removal from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 553-560.	0.7	13
100	Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chemical Engineering Journal, 2018, 339, 214-222.	6.6	88
101	Biomineralization of varied calcium carbonate crystals by the synergistic effect of silk fibroin/magnesium ions in a microbial system. CrystEngComm, 2018, 20, 2366-2373.	1.3	30
102	Hydrothermal preparation of CS@MnO2 with different morphologies for supercapacitor electrode materials. Materials Letters, 2018, 210, 329-332.	1.3	22
103	Naturally Dried, Double Nitrogen-Doped 3D Graphene Aerogels Modified by Plant Extracts for Multifunctional Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 1172-1181.	3.2	32
104	Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide. Applied Surface Science, 2018, 435, 920-927.	3.1	94
105	Konjac Glucomannan Derived Carbon Aerogels for Multifunctional Applications. Nano, 2018, 13, 1850113.	0.5	5
106	<i>Thalia dealbata</i> Inspired Anisotropic Cellular Biomass Derived Carbonaceous Aerogel. ACS Sustainable Chemistry and Engineering, 2018, 6, 17152-17159.	3.2	51
107	Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control. Carbohydrate Polymers, 2018, 202, 425-433.	5.1	90
108	Bioinspired enhancement of chitosan nanocomposite films via Mg-ACC crystallization, their robust, hydrophobic and biocompatible. Applied Surface Science, 2018, 459, 129-137.	3.1	30

#	Article	IF	CITATIONS
109	Bioassembly of fungal hyphae/graphene oxide composite as high performance adsorbents for U(VI) removal. Applied Surface Science, 2018, 458, 226-235.	3.1	21
110	Bayberry tannin immobilized bovine serum albumin nanospheres: characterization, irradiation stability and selective removal of uranyl ions from radioactive wastewater. Journal of Materials Chemistry A, 2018, 6, 15359-15370.	5.2	74
111	Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresource Technology, 2018, 267, 510-516.	4.8	187
112	Crystallization of calcium carbonate mineral with hierarchical structures regulated by silk fibroin in microbial mineralization system. Journal of Crystal Growth, 2018, 493, 51-57.	0.7	15
113	Novel collagen waste derived Mn-doped nitrogen-containing carbon for supercapacitors. Electrochimica Acta, 2018, 285, 292-300.	2.6	35
114	Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydrate Polymers, 2018, 197, 253-259.	5.1	34
115	Rheological Properties of Graphene Oxide/Konjac Glucomannan Sol. Journal of Nanoscience and Nanotechnology, 2018, 18, 3592-3598.	0.9	3
116	A biomass carbon mass coated with modified TiO ₂ nanotube/graphene for photocatalysis. New Journal of Chemistry, 2017, 41, 4212-4219.	1.4	12
117	Synergistic metallogenesis of simulated radionuclide strontium by carbonate-mineralization bacteria/nano-montmorillonite. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 333-341.	0.7	7
118	Capture of Cs ⁺ and Sr ²⁺ from Aqueous Solutions by Using Cr Doped TiO ₂ Nanotubes. Journal of Nanoscience and Nanotechnology, 2017, 17, 3943-3950.	0.9	6
119	High-Strength Konjac Clucomannan/Silver Nanowires Composite Films with Antibacterial Properties. Materials, 2017, 10, 524.	1.3	27
120	High Performances of Artificial Nacre-Like Graphene Oxide-Carrageenan Bio-Nanocomposite Films. Materials, 2017, 10, 536.	1.3	17
121	Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers. International Journal of Environmental Research and Public Health, 2017, 14, 819.	1.2	3
122	Effects of Montmorillonite on the Mineralization and Cementing Properties of Microbiologically Induced Calcium Carbonate. Advances in Materials Science and Engineering, 2017, 2017, 1-13.	1.0	9
123	Fabricating a graphene oxide—bayberry tannin sponge for effective radionuclide removal. Materials Research Express, 2016, 3, 055002.	0.8	10
124	Preparation and Perfomance of an Aging-Resistant Nanocomposite Film of Binary Natural Polymer–Graphene Oxide. ACS Omega, 2016, 1, 1173-1181.	1.6	11
125	In situ preparation of mycelium/bayberry tannin for the removal of strontium from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 495-504.	0.7	8
126	3D hierarchical walnut-like CuO nanostructures: Preparation, characterization and their efficient catalytic activity for CO oxidation. Physica B: Condensed Matter, 2016, 493, 7-13.	1.3	12

#	Article	IF	CITATIONS
127	Preparation and properties of cotton stalk carbon/gold nanoparticles composite. Journal of Experimental Nanoscience, 2016, 11, 471-479.	1.3	2
128	Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates. Scientific Reports, 2015, 5, 16137.	1.6	20
129	In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Applied Surface Science, 2015, 338, 22-26.	3.1	59
130	Coating of microbially produced calcium carbonate onto stone materials. Science China Technological Sciences, 2015, 58, 266-272.	2.0	6
131	Natural Chrysotile-Based Nanowires Decorated with Monodispersed Ag Nanoparticles as a Highly Active and Reusable Hydrogenation Catalyst. Journal of Physical Chemistry C, 2015, 119, 21465-21472.	1.5	35
132	One-step hydrothermal synthesis of iron and nitrogen co-doped TiO ₂ nanotubes with enhanced visible-light photocatalytic activity. CrystEngComm, 2015, 17, 8368-8376.	1.3	30
133	Microbiological precipitation of strontium carbonate. , 2011, , .		0