
Odilia Queiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transport of carboxylic acids in yeasts. FEMS Microbiology Reviews, 2008, 32, 974-994.	3.9	157
2	Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Research, 2012, 12, 375-381.	1.1	86
3	Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Seminars in Cancer Biology, 2017, 43, 17-34.	4.3	78
4	Hair as an alternative matrix in bioanalysis. Bioanalysis, 2013, 5, 895-914.	0.6	73
5	Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin. Journal of Bioenergetics and Biomembranes, 2013, 45, 467-475.	1.0	62
6	Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. Journal of Bioenergetics and Biomembranes, 2012, 44, 141-153.	1.0	60
7	Comparative metabolism of tramadol and tapentadol: a toxicological perspective. Drug Metabolism Reviews, 2016, 48, 577-592.	1.5	55
8	Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. Advances in Experimental Medicine and Biology, 2016, 892, 229-251.	0.8	36
9	Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells. Toxicology, 2016, 359-360, 1-10.	2.0	31
10	The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH. Biochemical Journal, 2015, 467, 247-258.	1.7	30
11	Effective analgesic doses of tramadol or tapentadol induce brain, lung and heart toxicity in Wistar rats. Toxicology, 2017, 385, 38-47.	2.0	30
12	Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes. Current Genetics, 2007, 51, 161-169.	0.8	26
13	Acute administration of tramadol and tapentadol at effective analgesic and maximum tolerated doses causes hepato- and nephrotoxic effects in Wistar rats. Toxicology, 2017, 389, 118-129.	2.0	25
14	Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. Applied Sciences (Switzerland), 2021, 11, 8112.	1.3	18
15	Acquisition of flocculation phenotype by Kluyveromyces marxianus when overexpressing GAP1 gene encoding an isoform of glyceraldehyde-3-phosphate dehydrogenase. Journal of Microbiological Methods, 2003, 55, 433-440.	0.7	16
16	Improved gap repair cloning in yeast: treatment of the gapped vector with <i>Taq</i> DNA polymerase avoids vector selfâ€ligation. Yeast, 2012, 29, 419-423.	0.8	16
17	Disruption of pH Dynamics Suppresses Proliferation and Potentiates Doxorubicin Cytotoxicity in Breast Cancer Cells. Pharmaceutics, 2021, 13, 242.	2.0	12
18	MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions. Biological Chemistry, 2019, 400, 787-799.	1.2	11

Odilia Queiros

#	Article	IF	CITATIONS
19	Repeated Administration of Clinical Doses of Tramadol and Tapentadol Causes Hepato- and Nephrotoxic Effects in Wistar Rats. Pharmaceuticals, 2020, 13, 149.	1.7	11
20	The <i>Debaryomyces hansenii</i> carboxylate transporters Jen1 homologues are functional in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2015, 15, fov094.	1.1	10
21	Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals, 2021, 14, 97.	1.7	10
22	Bioenergetic modulators hamper cancer cell viability and enhance response to chemotherapy. Journal of Cellular and Molecular Medicine, 2018, 22, 3782-3794.	1.6	3
23	New horizons on pH regulators as cancer biomarkers and targets for pharmacological intervention. , 2020, , 417-450.		1