Charles W Bacon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4366534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial endophytes: evolution, diversity, community functions, and regulation. , 2021, , 1-14.		Ο
2	Fungal and Bacterial Maize Kernel Interactions with the Vertically Transmitted Endophytic State of Fusarium verticillioides. , 2019, , 191-209.		2
3	Screening of <i>Bacillus mojavensis</i> biofilms and biosurfactants using laser ablation electrospray ionization mass spectroscopy. Journal of Applied Microbiology, 2018, 125, 867-875.	1.4	9
4	In situergot alkaloid detection in threeBalansia epichloe-infected grass species. Journal of Applied Microbiology, 2018, 125, 976-985.	1.4	4
5	Is Quorum Signaling by Mycotoxins a New Risk-Mitigating Strategy for Bacterial Biocontrol of <i>Fusarium verticillioides</i> and Other Endophytic Fungal Species?. Journal of Agricultural and Food Chemistry, 2017, 65, 7071-7080.	2.4	12
6	Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis, 2016, 68, 87-98.	1.2	134
7	Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Frontiers in Microbiology, 2015, 6, 95.	1.5	91
8	Abiotic and Biotic Plant Stress-Tolerant and Beneficial Secondary Metabolites Produced by Endophytic Bacillus Species. , 2015, , 163-177.		26
9	Analyses of Black Aspergillus Species of Peanut and Maize for Ochratoxins and Fumonisins. Journal of Food Protection, 2014, 77, 805-813.	0.8	10
10	Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants. Journal of Microbiological Methods, 2013, 94, 381-389.	0.7	2
11	Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecology, 2012, 5, 322-330.	0.7	83
12	The secret world of endophytes in perspective. Fungal Ecology, 2012, 5, 287-288.	0.7	10
13	Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biological Control, 2012, 62, 1-9.	1.4	41
14	In planta reduction of maize seedling stalk lesions by the bacterial endophyte <i>Bacillus mojavensis</i> . Canadian Journal of Microbiology, 2011, 57, 485-492.	0.8	34
15	Bacillus mojavensis: Its Endophytic Nature, the Surfactins, and Their Role in the Plant Response to Infection by Fusarium verticillioides. , 2011, , 21-39.		21
16	The Black Aspergillus Species of Maize and Peanuts and Their Potential for Mycotoxin Production. Toxins, 2010, 2, 399-416.	1.5	89
17	Translocation of Sphingoid Bases and Their 1-Phosphates, but Not Fumonisins, from Roots to Aerial Tissues of Maize Seedlings Watered with Fumonisins. Journal of Agricultural and Food Chemistry, 2010, 58, 7476-7481.	2.4	18
18	Chemotaxis Disruption in Pratylenchus Scribneri by Tall Fescue Root Extracts and Alkaloids. Journal of Chemical Ecology, 2009, 35, 844-850.	0.9	36

CHARLES W BACON

#	Article	IF	CITATIONS
19	<i>FDB2</i> encodes a member of the arylamine <i>N</i> acetyltransferase family and is necessary for biotransformation of benzoxazolinones by <i>Fusarium verticillioides</i> Journal of Applied Microbiology, 2009, 107, 657-671.	1.4	40
20	Isolation and Characterization of Leu ⁷ -Surfactin from the Endophytic Bacterium Bacillus mojavensis RRC 101, a Biocontrol Agent for Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 2009, 57, 4287-4292.	2.4	107
21	Use of a rep-PCR system to predict species in the Aspergillus section Nigri. Journal of Microbiological Methods, 2009, 79, 1-7.	0.7	28
22	Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. Toxin Reviews, 2009, 28, 102-117.	1.5	26
23	Electrotransformation of Bacillus mojavensis with fluorescent protein markers. Journal of Microbiological Methods, 2008, 74, 102-105.	0.7	11
24	Potential for control of seedling blight of wheat caused byFusarium graminearumand related species using the bacterial endophyteBacillus mojavensis. Biocontrol Science and Technology, 2007, 17, 81-94.	0.5	42
25	Fumonisin Disruption of Ceramide Biosynthesis in Maize Roots and the Effects on Plant Development andFusarium verticillioides-Induced Seedling Disease. Journal of Agricultural and Food Chemistry, 2007, 55, 2937-2946.	2.4	70
26	Interactions of Bacillus mojavensis and Fusarium verticillioides with a Benzoxazolinone (BOA) and its Transformation Product, APO. Journal of Chemical Ecology, 2007, 33, 1885-1897.	0.9	31
27	Fumonisin Production and Bioavailability to Maize Seedlings Grown from Seeds Inoculated withFusarium verticillioidesand Grown in Natural Soils. Journal of Agricultural and Food Chemistry, 2006, 54, 5694-5700.	2.4	36
28	Growth-inhibiting effects of concentrations of fusaric acid on the growth of Bacillus mojavensis and other biocontrol Bacillus species. Journal of Applied Microbiology, 2006, 100, 185-194.	1.4	53
29	Endophytic and Biological Control Potential of Bacillus mojavensis and Related Species. Biological Control, 2002, 23, 274-284.	1.4	159
30	Biological Control of Fusarium moniliforme in Maize. Environmental Health Perspectives, 2001, 109, 325.	2.8	42
31	Screening of fungal species for fumonisin production and fumonisin-like disruption of sphingolipid biosynthesis. Mycopathologia, 1999, 146, 91-98.	1.3	13
32	Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by Fusarium moniliforme. Phytochemistry, 1998, 48, 451-454.	1.4	64
33	Molecular Phylogeny of Acremonium and Its Taxonomic Implications. Mycologia, 1996, 88, 369.	0.8	257
34	Molecular phylogeny of <i>Acremonium</i> and its taxonomic implications. Mycologia, 1996, 88, 369-383.	0.8	309
35	Subchronic toxicity of fumonisin B ₁ to male and female rats. Food Additives and Contaminants, 1995, 12, 473-478.	2.0	13
36	Fumonisin Production in Corn by Toxigenic Strains of Fusarium moniliforme and Fusarium proliferatum. Journal of Food Protection, 1994, 57, 514-521.	0.8	102

CHARLES W BACON

#	Article	IF	CITATIONS
37	Dietary Fumonisin B1 Induces Disruption of Sphingolipid Metabolism in Sprague-Dawley Rats: A New Mechanism of Nephrotoxicity , ,. Journal of Nutrition, 1994, 124, 594-603.	1.3	179
38	A Corn Seedling Assay for Resistance to <i>Fusarium moniliforme</i> . Plant Disease, 1994, 78, 302.	0.7	55
39	A preliminary investigation on renal and hepatic toxicity in rats fed purified fumonisin B1. Natural Toxins, 1993, 1, 222-228.	1.0	130
40	Fungal Toxins in Foods: Recent Concerns. Annual Review of Nutrition, 1993, 13, 167-189.	4.3	119
41	Microcyclic Conidiation Cycles in Epichloe Typhina. Mycologia, 1991, 83, 743-751.	0.8	32
42	Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. Journal of Biological Chemistry, 1991, 266, 14486-14490.	1.6	956
43	A Method of Detection of Fumonisins in Corn Samples Associated with Field Cases of Equine Leukoencephalomalacia. Mycologia, 1990, 82, 698-702.	0.8	98
44	Hepatotoxicity and renal toxicity in rats of corn samples associated with field cases of equine leukoencephalomalacia. Food and Chemical Toxicology, 1989, 27, 89-96.	1.8	130
45	A Chemically Defined Medium for the Growth and Synthesis of Ergot Alkaloids by Species ofBalansia. Mycologia, 1985, 77, 418-423.	0.8	10
46	Ergot alkaloid biosynthesis by isolates of <i>Balansia epichloë</i> and <i>B</i> . <i>henningsiana</i> . Canadian Journal of Botany, 1981, 59, 2534-2538.	1.2	23
47	Indole alkaloids from Balansia epichloe (Weese). Journal of Agricultural and Food Chemistry, 1977, 25, 88-93.	2.4	125
48	Toxicity and Occurrence of Balansia on Grasses from Toxic Fescue Pastures. Applied Microbiology, 1975, 29, 553-556.	0.6	30
49	Toxicity and Occurrence of <i>Balansia</i> on Grasses from Toxic Fescue Pastures. Applied Microbiology, 1975, 29, 553-556.	0.6	38
50	8. Some Factors Affecting the Nicotine Content of Tobacco ¹ . Agronomy Journal, 1929, 21, 159-167.	0.9	0
51	Nematotoxic effects of endophyte-infected tall fescue toxins and extracts in an in vitro bioassay using the nematode Pratylenchus scribneri. Grassland Research and Practice Series, <u>0</u> , 13, 357-361.	0.0	1