
Davide Bonalumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4366520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parametric investigation of CO2 capture from industrial flue gases using aqueous mixtures of ammonia (NH3) and potassium carbonate (K2CO3). International Journal of Greenhouse Gas Control, 2022, 114, 103567.	4.6	7
2	Techno-economic assessment of the FReSMe technology for CO2 emissions mitigation and methanol production from steel plants. Journal of CO2 Utilization, 2022, 56, 101852.	6.8	16
3	Techno-economic performance of the 2-propanol/1-butanol zeotropic mixture and 2-propanol/water azeotropic mixture as a working fluid in Organic Rankine Cycles. Energy, 2022, 246, 123316.	8.8	5
4	A case study of cascade supercritical CO2 power cycle for waste heat recovery from a small gas turbine. Energy Conversion and Management: X, 2022, 14, 100212.	1.6	1
5	Techno-economic investigations of supercritical CO2-based partial heating cycle as bottoming system of a small gas turbine. Energy, 2022, 252, 124066.	8.8	7
6	Thermo-chemical engines: Unexploited high-potential energy converters. Energy Conversion and Management, 2021, 229, 113685.	9.2	10
7	CO2-TiCl4 working fluid for high-temperature heat source power cycles and solar application. Renewable Energy, 2020, 147, 2842-2854.	8.9	22
8	Rate-based simulation and techno-economic analysis of coal-fired power plants with aqueous ammonia carbon capture. Energy Conversion and Management, 2019, 199, 111966.	9.2	25
9	Thermodynamic and kinetic properties of NH3-K2CO3-CO2-H2O system for carbon capture applications. International Journal of Greenhouse Gas Control, 2019, 85, 121-131.	4.6	21
10	CO2 mixtures as innovative working fluid in power cycles applied to solar plants. Techno-economic assessment. Solar Energy, 2019, 181, 530-544.	6.1	60
11	Considerations on CO2 and pollutants emissions of modern cars. AIP Conference Proceedings, 2019, , .	0.4	4
12	Experimental study of the aqueous CO2-NH3 rate of reaction for temperatures from 15â€Â°C to 35â€Â°C, NH3 concentrations from 5% to 15% and CO2 loadings from 0.2 to 0.6. International Journal of Greenhouse Gas Control, 2018, 70, 117-127.	4.6	9
13	Experimental data of the aqueous NH3 and CO2 absorption at temperatures from 15â€ [–] °C to 35â€ [–] °C, NH3 concentrations from 5% to 15% and CO2 loadings from 0.2 to 0.6 measured with the Wetted Wall Column. Data in Brief, 2018, 17, 1240-1244.	1.0	1
14	Techno-economic Comparison of Combined Cycle Gas Turbines with Advanced Membrane Configuration and Monoethanolamine Solvent at Part Load Conditions. Energy & Fuels, 2018, 32, 625-645.	5.1	17
15	Enhanced Geothermal System with captured CO2. Energy Procedia, 2018, 148, 744-750.	1.8	4
16	A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture. International Journal of Greenhouse Gas Control, 2018, 74, 155-173.	4.6	45
17	Life Cycle Assessment for supercritical pulverized coal power plants with post-combustion carbon capture and storage. Journal of Cleaner Production, 2017, 157, 10-21.	9.3	114
18	Effect of a partial thermal decomposition of the working fluid on the performances of ORC power plants. Energy, 2017, 133, 1013-1026.	8.8	37

Davide Bonalumi

#	Article	IF	CITATIONS
19	Results from Process Modeling of the Mixed-salt Technology for CO2 Capture from Post-combustion-related Applications. Energy Procedia, 2017, 114, 771-780.	1.8	12
20	Performance Improvement of Cooled Ammonia-based CO2 Capture in Combined Cycles with Gasification of High-sulfur Coal. Energy Procedia, 2017, 114, 6440-6447.	1.8	6
21	Potential performance of environmental friendly application of ORC and Flash technology in geothermal power plants. Energy Procedia, 2017, 129, 621-628.	1.8	7
22	Zero Emission Geothermal Flash Power Plant. Energy Procedia, 2017, 126, 698-705.	1.8	8
23	The design of CO 2 -based working fluids for high-temperature heat source power cycles. Energy Procedia, 2017, 129, 947-954.	1.8	8
24	Innovative Process Cycle with Zeolite (MS13X) for Post Combustion Adsorption. Energy Procedia, 2017, 114, 2211-2218.	1.8	6
25	Kinetic study of a Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation. Energy Procedia, 2017, 114, 1352-1359.	1.8	4
26	Thermal stability of organic fluids for Organic Rankine Cycle systems. , 2017, , 121-151.		15
27	Preliminary Study of Pyrolysis and Gasification of Biomass and Thermosetting Resins for Energy Production. Energy Procedia, 2016, 101, 432-439.	1.8	7
28	Rate-based Approaches for the Carbon Capture with Aqueous Ammonia Without Salt Precipitation. Energy Procedia, 2016, 101, 400-407.	1.8	5
29	A Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation. Energy Procedia, 2016, 86, 134-143.	1.8	27
30	Thermodynamic Assessment of Cooled and Chilled Ammonia-based CO2 Capture in Air-Blown IGCC Plants. Energy Procedia, 2016, 86, 272-281.	1.8	10
31	Titanium tetrachloride as novel working fluid for high temperature Rankine Cycles: Thermodynamic analysis and experimental assessment of the thermal stability. Applied Thermal Engineering, 2016, 107, 21-27.	6.0	30
32	Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia. Energy, 2016, 117, 439-449.	8.8	34
33	Concentrated Aqueous Piperazine as CO2 Capture Solvent: Detailed Evaluation of the Integration with a Power Plant. Energy Procedia, 2014, 63, 1218-1222.	1.8	12
34	Energetic evaluation of a power plant integrated with a piperazine-based CO 2 capture process. International Journal of Greenhouse Gas Control, 2014, 28, 343-355.	4.6	51
35	A Study of CO2 Capture in Advanced IGCC Systems by Ammonia Scrubbing. Energy Procedia, 2014, 45, 663-670.	1.8	16
36	Alternative Layouts for the Carbon Capture with the Chilled Ammonia Process. Energy Procedia, 2013, 37, 2076-2083.	1.8	21

DAVIDE BONALUMI

#	Article	IF	CITATIONS
37	Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up. Applied Energy, 2013, 110, 44-54.	10.1	65
38	A parametric investigation of the Chilled Ammonia Process from energy and economic perspectives. Fuel, 2012, 101, 74-83.	6.4	74
39	Comparison of two electrolyte models for the carbon capture with aqueous ammonia. International Journal of Greenhouse Gas Control, 2012, 8, 61-72.	4.6	53
40	Modeling of ultra super critical power plants integrated with the chilled ammonia process. Energy Procedia, 2011, 4, 1721-1728.	1.8	18
41	Simulation Comparison of PEMFC Micro-Cogeneration Units With Conventional and Innovative Fuel Processing. , 2010, , .		6
42	Energy and exergy analyses for the carbon capture with the Chilled Ammonia Process (CAP). Energy Procedia, 2009, 1, 1059-1066.	1.8	69
43	In Situ Monitoring and Modeling of the Solvent-Mediated Polymorphic Transformation ofl-Glutamic Acid. Crystal Growth and Design, 2006, 6, 881-891.	3.0	245
44	Chemical Absorption by Aqueous Solution of Ammonia. , 0, , .		0
45	Isobaric Vapor–Liquid Equilibrium Data for the Isopropanol–Water System. Journal of Chemical & Engineering Data, 0, , .	1.9	2