
Kailong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4366477/publications.pdf Version: 2024-02-01

KALLONG ZHANG

#	Article	IF	CITATIONS
1	Nitrogen-doped carbon embedded with Ag nanoparticles for bidirectionally-promoted polysulfide redox electrochemistry. Chemical Engineering Journal, 2022, 427, 130897.	12.7	9
2	Phosphorus-doped mesoporous carbon derived from waste tires as anode for K-ion batteries. Materials Letters, 2021, 285, 128983.	2.6	10
3	MOF-derived fluorine and nitrogen co-doped porous carbon for an integrated membrane in lithium–sulfur batteries. New Journal of Chemistry, 2021, 45, 2361-2365.	2.8	20
4	Taming Polysulfides in an Li–S Battery With Low-Temperature One-step Chemical Synthesis of Titanium Carbide Nanoparticles From Waste PTFE. Frontiers in Chemistry, 2021, 9, 638557.	3.6	4
5	Lowâ€ŧemperature synthesis of CrB nanoparticles and nanosheets by a solidâ€state reaction. International Journal of Applied Ceramic Technology, 2021, 18, 1498-1501.	2.1	1
6	One-step Chemical Synthesis of Superconducting MgCNi ₃ Microparticles at Low Temperature. Chemistry Letters, 2020, 49, 354-356.	1.3	0
7	Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium–sulfur battery. Electrochimica Acta, 2020, 354, 136648.	5.2	40
8	Synthesis of nanostructured zirconium monosilicide via a lithium thermal reduction route at low temperature. International Journal of Materials Research, 2020, 111, 1047-1050.	0.3	1
9	Solid-State Synthesis and Characterization of Hafnium Diboride Nanoparticles. Journal of Superhard Materials, 2020, 42, 396-400.	1.2	Ο
10	Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator. ACS Applied Energy Materials, 2019, 2, 5793-5798.	5.1	57
11	Study on the effect of transition metal sulfide in lithium–sulfur battery. Inorganic Chemistry Frontiers, 2019, 6, 477-481.	6.0	41
12	Pyridinic and pyrrolic nitrogen-enriched carbon as a polysulfide blocker for high-performance lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2019, 6, 955-960.	6.0	22
13	Conductive Nanocrystalline Niobium Carbide as Highâ€Efficiency Polysulfides Tamer for Lithiumâ€5ulfur Batteries. Advanced Functional Materials, 2018, 28, 1704865.	14.9	210
14	2D molybdenum nitride nanosheets as anode materials for improved lithium storage. Nanoscale, 2018, 10, 18936-18941.	5.6	61
15	A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. Inorganic Chemistry Frontiers, 2018, 5, 2013-2017.	6.0	13
16	Componentâ€Tunable Rutileâ€Anatase TiO ₂ /Reduced Graphene Oxide Nanocomposites for Enhancement of Electrocatalytic Oxygen Evolution. ChemNanoMat, 2018, 4, 1133-1139.	2.8	13
17	Wetâ€Chemical Synthesis of Hollow Redâ€Phosphorus Nanospheres with Porous Shells as Anodes for Highâ€Performance Lithiumâ€ion and Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700214.	21.0	213
18	Synthesis of S/CoS2 Nanoparticles-Embedded N-doped Carbon Polyhedrons from Polyhedrons ZIF-67 and their Properties in Lithium-Sulfur Batteries. Electrochimica Acta, 2016, 218, 243-251.	5.2	141

KAILONG ZHANG

#	Article	IF	CITATIONS
19	B,N-Co-doped Graphene Supported Sulfur for Superior Stable Li–S Half Cell and Ge–S Full Battery. ACS Applied Materials & Interfaces, 2016, 8, 27679-27687.	8.0	56
20	A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. Dalton Transactions, 2016, 45, 19221-19225.	3.3	12
21	Trace Fe ³⁺ mediated synthesis of LiFePO ₄ micro/nanostructures towards improved electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 456-463.	3.6	17
22	A graphene oxide-wrapped bipyramidal sulfur@polyaniline core–shell structure as a cathode for Li–S batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 6404-6410.	10.3	98
23	In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries. Nanoscale, 2016, 8, 4903-4907.	5.6	30
24	A potential pyrrhotite (Fe ₇ S ₈) anode material for lithium storage. RSC Advances, 2015, 5, 14828-14831.	3.6	65
25	Amorphous S-rich S _{1â^'x} Se _x /C (x ≤0.1) composites promise better lithium–sulfur batteries in a carbonate-based electrolyte. Energy and Environmental Science, 2015, 8, 3181-3186.	30.8	164
26	Chemical synthesis of porous hierarchical Ge–Sn binary composites using metathesis reaction for rechargeable Li-ion batteries. Chemical Communications, 2015, 51, 17156-17159.	4.1	27
27	A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy and Environmental Science, 2015, 8, 3187-3191.	30.8	193
28	Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochimica Acta, 2015, 155, 174-182.	5.2	166