Plcido Navas

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4366402/placido-navas-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

109 13,112 50 203 h-index g-index citations papers 6.1 218 14,560 5.97 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
203	Coenzyme Q at the Hinge of Health and Metabolic Diseases. <i>Antioxidants</i> , 2021 , 10,	7.1	3
202	Cooperation between CYB5R3 and NOX4 via coenzyme Q mitigates endothelial inflammation. <i>Redox Biology</i> , 2021 , 47, 102166	11.3	2
201	Regulation of coenzyme Q biosynthesis pathway in eukaryotes. <i>Free Radical Biology and Medicine</i> , 2021 , 165, 312-323	7.8	7
200	Secondary CoQ deficiency, bioenergetics unbalance in disease and aging. <i>BioFactors</i> , 2021 , 47, 551-569	6.1	5
199	Coenzyme Q Biosynthesis Disorders 2021 , 143-190		1
198	Cellular Models for Primary CoQ Deficiency Pathogenesis Study. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1
197	Coenzyme Q Treatment Monitoring in Different Human Biological Samples. <i>Antioxidants</i> , 2020 , 9,	7.1	8
196	Resveratrol Regulates the Expression of Genes Involved in CoQ Synthesis in Liver in Mice Fed with High Fat Diet. <i>Antioxidants</i> , 2020 , 9,	7.1	8
195	Protective effect of maternal exercise against amyloid-Theurotoxicity in the male rat offspring@cerebellum. <i>Journal of Developmental Origins of Health and Disease</i> , 2020 , 11, 521-532	2.4	2
194	Coenzyme Q10 supplementation in aging 2020 , 183-192		
193	The Current Coenzyme Q Science and Knowledge 2020 , 3-9		О
192	High coenzyme Q10 plasma levels improve stress and damage markers in professional soccer players during competition. <i>International Journal for Vitamin and Nutrition Research</i> , 2020 , 1-12	1.7	3
191	Design of High-Throughput Screening of Natural Extracts to Identify Molecules Bypassing Primary Coenzyme Q Deficiency in. <i>SLAS Discovery</i> , 2020 , 25, 299-309	3.4	3
190	NQO1 protects obese mice through improvements in glucose and lipid metabolism. <i>Npj Aging and Mechanisms of Disease</i> , 2020 , 6, 13	5.5	10
189	Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. <i>Experimental Gerontology</i> , 2020 , 142, 111147	4.5	32
188	Na controls hypoxic signalling by the mitochondrial respiratory chain. <i>Nature</i> , 2020 , 586, 287-291	50.4	67
187	Clinical presentation and proteomic signature of patients with TANGO2 mutations. <i>Journal of Inherited Metabolic Disease</i> , 2020 , 43, 297-308	5.4	17

(2018-2019)

186	Haploinsufficiency Reduces Mitochondrial Lipid Oxidation and Causes Myopathy Associated with CoQ Deficiency. <i>Journal of Clinical Medicine</i> , 2019 , 8,	5.1	18
185	Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization. <i>FASEB Journal</i> , 2019 , 33, 7578-7587	0.9	6
184	Calorie Restriction 2019 , 315-315		
183	Plasma coenzyme Q status is impaired in selected genetic conditions. <i>Scientific Reports</i> , 2019 , 9, 793	4.9	12
182	Essential Physiological Differences Characterize Short- and Long-Lived Strains of Drosophila melanogaster. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2019 , 74, 1835-	-1843	6
181	Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. <i>Nutrition</i> , 2019 , 57, 133-140	4.8	70
180	Physical Exercise During Pregnancy Prevents Cognitive Impairment Induced by Amyloid-In Adult Offspring Rats. <i>Molecular Neurobiology</i> , 2019 , 56, 2022-2038	6.2	28
179	The Impact of Aging, Calorie Restriction and Dietary Fat on Autophagy Markers and Mitochondrial Ultrastructure and Dynamics in Mouse Skeletal Muscle. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2019 , 74, 760-769	6.4	17
178	Vanillic Acid Restores Coenzyme Q Biosynthesis and ATP Production in Human Cells Lacking. <i>Oxidative Medicine and Cellular Longevity</i> , 2019 , 2019, 3904905	6.7	23
177	PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 277-286	11.5	42
176	Muscle Involvement in a Large Cohort of Pediatric Patients with Genetic Diagnosis of Mitochondrial Disease. <i>Journal of Clinical Medicine</i> , 2019 , 8,	5.1	11
175	Coenzyme Q Supplementation in Aging and Disease. Frontiers in Physiology, 2018, 9, 44	4.6	176
174	Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes?. <i>Biogerontology</i> , 2018 , 19, 461-480	4.5	30
173	Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function. <i>Human Mutation</i> , 2018 , 39, 406-414	4.7	37
172	The mitochondrial phosphatase PPTC7 orchestrates mitochondrial metabolism regulating coenzyme Q biosynthesis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2018 , 1859, 1235-1248	4.6	18
171	Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. <i>Journal of Clinical Medicine</i> , 2018 , 7,	5.1	12
170	Molecular diagnosis of coenzyme Q deficiency: an update. <i>Expert Review of Molecular Diagnostics</i> , 2018 , 18, 491-498	3.8	19
169	Overexpression of CYB5R3 and NQO1, two NAD -producing enzymes, mimics aspects of caloric restriction. <i>Aging Cell</i> , 2018 , 17, e12767	9.9	24

168	Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme Q Deficiency. <i>Stem Cells</i> , 2017 , 35, 1687-1703	5.8	21
167	Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q deficiency harboring a heterozygous mutation in COQ4 gene. <i>Stem Cell Research</i> , 2017 , 24, 144-147	1.6	8
166	Biochemical Assessment of Coenzyme Q Deficiency. Journal of Clinical Medicine, 2017, 6,	5.1	28
165	Balanced CoQ biosynthesis is required for lifespan and mitophagy in yeast. <i>Microbial Cell</i> , 2017 , 4, 38-51	3.9	12
164	Coenzyme Q and Pyridoxal Phosphate Deficiency Is a Common Feature in Mucopolysaccharidosis Type III. <i>JIMD Reports</i> , 2016 , 25, 1-7	1.9	4
163	Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metabolism, 2016, 23, 1093-	1214162	245
162	Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content. <i>European Journal of Human Genetics</i> , 2016 , 24, 367-72	5.3	15
161	RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. <i>RNA Biology</i> , 2016 , 13, 622-34	4.8	23
160	Omega-3 fatty acids partially revert the metabolic gene expression profile induced by long-term calorie restriction. <i>Experimental Gerontology</i> , 2016 , 77, 29-37	4.5	3
159	Coenzyme Q biosynthesis and its role in the respiratory chain structure. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2016 , 1857, 1073-1078	4.6	67
158	Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast. <i>Frontiers in Plant Science</i> , 2016 , 7, 85	6.2	8
157	Secondary coenzyme Q10 deficiencies in oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders. <i>Mitochondrion</i> , 2016 , 30, 51-8	4.9	52
156	A statistical algorithm showing coenzyme Q and citrate synthase as biomarkers for mitochondrial respiratory chain enzyme activities. <i>Scientific Reports</i> , 2016 , 6, 15	4.9	24
155	Cytochrome reductase and the control of lipid metabolism and healthspan. <i>Npj Aging and Mechanisms of Disease</i> , 2016 , 2, 16006	5.5	38
154	The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. <i>Cell Reports</i> , 2016 , 15, 197-20	910.6	153
153	Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. <i>Cell Metabolism</i> , 2016 , 23, 725-34	24.6	220
152	Calorie restriction as an intervention in ageing. <i>Journal of Physiology</i> , 2016 , 594, 2043-60	3.9	160
151	Resveratrol primes the effects of physical activity in old mice. <i>British Journal of Nutrition</i> , 2016 , 116, 979	9-58	24

150	The COQ2 genotype predicts the severity of coenzyme Q10 deficiency. <i>Human Molecular Genetics</i> , 2016 , 25, 4256-4265	5.6	40
149	Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. <i>Aging Cell</i> , 2016 , 15, 477-87	9.9	18
148	Mitochondrial responsibility in ageing process: innocent, suspect or guilty. <i>Biogerontology</i> , 2015 , 16, 599-620	4.5	52
147	Molecular diagnosis of coenzyme Q10 deficiency. Expert Review of Molecular Diagnostics, 2015, 15, 1049	1 -5 8	14
146	Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice. <i>Aging Clinical and Experimental Research</i> , 2015 , 27, 775-83	4.8	38
145	The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice. <i>Biogerontology</i> , 2015 , 16, 655-70	4.5	13
144	The Influence of Dietary Fat Source on Life Span in Calorie Restricted Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2015 , 70, 1181-8	6.4	30
143	Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2015 , 70, 33-43	6.4	31
142	Determination of urinary coenzyme Q10 by HPLC with electrochemical detection: Reference values for a paediatric population. <i>BioFactors</i> , 2015 , 41, 424-30	6.1	17
141	Reconsidering the Role of Mitochondria in Aging. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2015 , 70, 1334-42	6.4	142
140	COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. <i>American Journal of Human Genetics</i> , 2015 , 96, 309-17	11	66
140	deficiency. American Journal of Human Genetics, 2015 , 96, 309-17 Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. Journals of	6.4	66
	deficiency. American Journal of Human Genetics, 2015, 96, 309-17 Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 399-409		
139	deficiency. American Journal of Human Genetics, 2015, 96, 309-17 Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 399-409 Anti-inflammatory effect of resveratrol in old mice liver. Experimental Gerontology, 2015, 64, 1-7 Primary coenzyme O10 deficiency presenting as fatal neonatal multiorgan failure. European Journal	6.4	13
139	deficiency. American Journal of Human Genetics, 2015, 96, 309-17 Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 399-409 Anti-inflammatory effect of resveratrol in old mice liver. Experimental Gerontology, 2015, 64, 1-7 Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. European Journal of Human Genetics, 2015, 23, 1254-8 Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.	6.4 4.5	13
139 138 137	Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2015 , 70, 399-409 Anti-inflammatory effect of resveratrol in old mice liver. <i>Experimental Gerontology</i> , 2015 , 64, 1-7 Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. <i>European Journal of Human Genetics</i> , 2015 , 23, 1254-8 Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. <i>Biogerontology</i> , 2014 , 15, 199-211 Membrane-bound CYBSR3 is a common effector of putritional and oxidative stress response	6.4 4·5 5·3	13 46 36
139 138 137 136	Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2015 , 70, 399-409 Anti-inflammatory effect of resveratrol in old mice liver. <i>Experimental Gerontology</i> , 2015 , 64, 1-7 Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. <i>European Journal of Human Genetics</i> , 2015 , 23, 1254-8 Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. <i>Biogerontology</i> , 2014 , 15, 199-211 Membrane-bound CYB5R3 is a common effector of nutritional and oxidative stress response	6.4 4.5 5.3 4.5	13 46 36 28

132	Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2014 , 1842, 1-6	6.9	57
131	Plasma membrane coenzyme Q: evidence for a role in autism. <i>Biologics: Targets and Therapy</i> , 2014 , 8, 199-205	4.4	8
130	Association between coenzyme Q10 and glucose transporter (GLUT1) deficiency. <i>BMC Pediatrics</i> , 2014 , 14, 284	2.6	13
129	Invertebrate models for coenzyme q10 deficiency. <i>Molecular Syndromology</i> , 2014 , 5, 170-9	1.5	5
128	Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2014 , 1841, 1628-38	5	37
127	Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats. <i>Experimental Gerontology</i> , 2014 , 56, 77-88	4.5	25
126	Characterization of CoQIbiosynthesis in fibroblasts of patients with primary and secondary CoQII deficiency. <i>Journal of Inherited Metabolic Disease</i> , 2014 , 37, 53-62	5.4	17
125	Dietary fat modifies mitochondrial and plasma membrane apoptotic signaling in skeletal muscle of calorie-restricted mice. <i>Age</i> , 2013 , 35, 2027-44		19
124	Sirtuin activation: a role for plasma membrane in the cell growth puzzle. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2013 , 68, 368-70	6.4	5
123	Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. <i>Science</i> , 2013 , 340, 1567-70	33.3	528
123		33.3	Ĭ
	Science, 2013, 340, 1567-70 Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose		Ĭ
122	Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. <i>Cell Metabolism</i> , 2013 , 18, 533-45	24.6 4.9	183
122	Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. <i>Cell Metabolism</i> , 2013 , 18, 533-45 Coenzyme Qldeficiency in mitochondrial DNA depletion syndromes. <i>Mitochondrion</i> , 2013 , 13, 337-41	24.6 4.9	183
122 121 120	Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. <i>Cell Metabolism</i> , 2013 , 18, 533-45 Coenzyme Qldeficiency in mitochondrial DNA depletion syndromes. <i>Mitochondrion</i> , 2013 , 13, 337-41 The way to determine coenzyme Q. <i>Journal of the American College of Cardiology</i> , 2013 , 62, 257 Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. <i>Journals of Gerontology - Series A Biological</i>	24.6 4.9 15.1	183 38 1
122 121 120	Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. <i>Cell Metabolism</i> , 2013 , 18, 533-45 Coenzyme Qldeficiency in mitochondrial DNA depletion syndromes. <i>Mitochondrion</i> , 2013 , 13, 337-41 The way to determine coenzyme Q. <i>Journal of the American College of Cardiology</i> , 2013 , 62, 257 Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2013 , 68, 1023-34 Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic	24.6 4.9 15.1 6.4	183 38 1 32
122 121 120 119	Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. <i>Cell Metabolism</i> , 2013 , 18, 533-45 Coenzyme Qldeficiency in mitochondrial DNA depletion syndromes. <i>Mitochondrion</i> , 2013 , 13, 337-41 The way to determine coenzyme Q. <i>Journal of the American College of Cardiology</i> , 2013 , 62, 257 Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2013 , 68, 1023-34 Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies. <i>BMJ Open</i> , 2013 , 3, The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in	24.6 4.9 15.1 6.4	183 38 1 32

(2010-2012)

11	14	The influence of dietary lipid composition on skeletal muscle mitochondria from mice following 1 month of calorie restriction. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2012 , 67, 1121-31	6.4	30	
11	13	Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease. <i>British Journal of Pharmacology</i> , 2012 , 167, 1311-28	8.6	32	
11	12	Dietary oil modifies the plasma proteome during aging in the rat. <i>Age</i> , 2012 , 34, 341-58		9	
11	11	The influence of dietary lipid composition on liver mitochondria from mice following 1 month of calorie restriction. <i>Bioscience Reports</i> , 2012 , 33, 83-95	4.1	24	
11	10	Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. <i>Journal of Medical Genetics</i> , 2012 , 49, 187	'-9 .8	84	
10	09	Resveratrol in cancer: cellular and mitochondrial consequences of proton transport inhibition. <i>Current Pharmaceutical Design</i> , 2012 , 18, 1338-44	3.3	5	
10	28	Amitriptyline induces coenzyme Q deficiency and oxidative damage in mouse lung and liver. <i>Toxicology Letters</i> , 2011 , 204, 32-7	4.4	15	
10	97	Calorie restriction modifies ubiquinone and COQ transcript levels in mouse tissues. <i>Free Radical Biology and Medicine</i> , 2011 , 50, 1728-36	7.8	29	
10	o6	Coenzyme Q deficiency in muscle. <i>Current Opinion in Neurology</i> , 2011 , 24, 449-56	7.1	62	
10	05	Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p. <i>Biochemical Journal</i> , 2011 , 440, 107-14	3.8	32	
10	94	Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. <i>FASEB Journal</i> , 2011 , 25, 2669-87	0.9	106	
10	03	Apoptotic microtubule network organization and maintenance depend on high cellular ATP levels and energized mitochondria. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2011 , 16, 404-24	5.4	21	
10	02	Caloric restriction reduces IgA levels and modifies cytokine mRNA expression in mouse small intestine. <i>Journal of Nutritional Biochemistry</i> , 2011 , 22, 560-6	6.3	13	
10	01	COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. <i>Journal of Clinical Investigation</i> , 2011 , 121, 2013-24	15.9	292	
10	00	Clinical symptoms in fibromyalgia are better associated to lipid peroxidation levels in blood mononuclear cells rather than in plasma. <i>PLoS ONE</i> , 2011 , 6, e26915	3.7	29	
99	9	Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. <i>Arthritis Research and Therapy</i> , 2010 , 12, R17	5.7	89	
98	8	Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs. <i>Anti-Cancer Drugs</i> , 2010 , 21, 932-44	2.4	27	
97	7	Monoascorbate free radical-dependent oxidation-reduction reactions of liver Golgi apparatus membranes. <i>Journal of Bioenergetics and Biomembranes</i> , 2010 , 42, 181-7	3.7	1	

96	Is coenzyme Q a key factor in aging?. Mechanisms of Ageing and Development, 2010, 131, 225-35	5.6	96
95	Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. <i>Movement Disorders</i> , 2010 , 25, 1262-8	7	48
94	Mitochondrial dysfunction in skin biopsies and blood mononuclear cells from two cases of fibromyalgia patients. <i>Clinical Biochemistry</i> , 2010 , 43, 1174-6	3.5	15
93	Complex I-associated hydrogen peroxide production is decreased and electron transport chain enzyme activities are altered in n-3 enriched fat-1 mice. <i>PLoS ONE</i> , 2010 , 5, e12696	3.7	47
92	Muscle physiology changes induced by every other day feeding and endurance exercise in mice: effects on physical performance. <i>PLoS ONE</i> , 2010 , 5, e13900	3.7	20
91	Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. <i>Autophagy</i> , 2009 , 5, 19-32	10.2	162
90	Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. <i>Journal of Biological Chemistry</i> , 2009 , 284, 28926-34	5.4	25
89	Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity. <i>Toxicology and Applied Pharmacology</i> , 2009 , 235, 329-37	4.6	28
88	Coenzyme Q supports distinct developmental processes in Caenorhabditis elegans. <i>Mechanisms of Ageing and Development</i> , 2009 , 130, 145-53	5.6	18
87	N-acetylcysteine, coenzyme Q10 and superoxide dismutase mimetic prevent mitochondrial cell dysfunction and cell death induced by d-galactosamine in primary culture of human hepatocytes. <i>Chemico-Biological Interactions</i> , 2009 , 181, 95-106	5	54
86	HDAC and Hsp90 inhibitors down-regulate PTTG1/securin but do not induce aneuploidy. <i>Genes Chromosomes and Cancer</i> , 2009 , 48, 194-201	5	11
85	Coenzyme Q10 distribution in blood is altered in patients with fibromyalgia. <i>Clinical Biochemistry</i> , 2009 , 42, 732-5	3.5	50
84	NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast. <i>Aging Cell</i> , 2009 , 8, 140-51	9.9	33
83	Coenzyme Q10 deficiency associated with a mitochondrial DNA depletion syndrome: a case report. <i>Clinical Biochemistry</i> , 2009 , 42, 742-5	3.5	21
82	"AcCoA"lade for energy and life span. <i>Cell Metabolism</i> , 2009 , 9, 305-6	24.6	3
81	Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2009 , 1788, 1238-48	3.8	19
80	Coenzyme Q10 deficiencies in neuromuscular diseases. <i>Advances in Experimental Medicine and Biology</i> , 2009 , 652, 117-28	3.6	20
79	Cell survival from chemotherapy depends on NF-kappaB transcriptional up-regulation of coenzyme Q biosynthesis. <i>PLoS ONE</i> , 2009 , 4, e5301	3.7	39

(2006-2009)

78	CYB5R3: a key player in aerobic metabolism and aging?. <i>Aging</i> , 2009 , 2, 63-8	5.6	17
77	Mitochondrial biogenesis and healthy aging. Experimental Gerontology, 2008, 43, 813-9	4.5	268
76	Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. <i>Biochemical and Biophysical Research Communications</i> , 2008 , 372, 35-9	3.4	42
<i>75</i>	Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. <i>Cell Metabolism</i> , 2008 , 8, 157-68	24.6	949
74	Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. <i>FASEB Journal</i> , 2008 , 22, 1874-85	0.9	114
73	Dicoumarol down-regulates human PTTG1/Securin mRNA expression through inhibition of Hsp90. <i>Molecular Cancer Therapeutics</i> , 2008 , 7, 474-82	6.1	15
72	Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2325-30	11.5	181
71	Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. <i>Clinical Biochemistry</i> , 2008 , 41, 697-700	3.5	59
7º	Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. <i>Molecular Neurobiology</i> , 2008 , 38, 167-77	6.2	86
69	Enhanced induction of apoptosis in a radio-resistant bladder tumor cell line by combined treatments with X-rays and wortmannin. <i>Radiation and Environmental Biophysics</i> , 2008 , 47, 445-52	2	7
68	Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. <i>Cerebellum</i> , 2007 , 6, 118-22	4.3	47
67	Modifications of plasma proteome in long-lived rats fed on a coenzyme Q10-supplemented diet. Experimental Gerontology, 2007 , 42, 798-806	4.5	30
66	The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2007 , 12, 1195-208	5.4	43
65	Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. <i>Human Molecular Genetics</i> , 2007 , 16, 1091-7	5.6	122
64	The importance of plasma membrane coenzyme Q in aging and stress responses. <i>Mitochondrion</i> , 2007 , 7 Suppl, S34-40	4.9	113
63	Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines. <i>Free Radical Biology and Medicine</i> , 2006 , 40, 1293-302	7.8	50
62	Differential regulation of hepatic apoptotic pathways by dietary olive and sunflower oils in the aging rat. <i>Experimental Gerontology</i> , 2006 , 41, 1174-84	4.5	14
61	Differential expression pattern of coq-8 gene during development in Caenorhabditis elegans. <i>Gene Expression Patterns</i> , 2006 , 6, 433-9	1.5	2

60	A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. <i>American Journal of Human Genetics</i> , 2006 , 78, 345-9	11	287
59	Cerebellar ataxia with coenzyme Q10 deficiency: diagnosis and follow-up after coenzyme Q10 supplementation. <i>Journal of the Neurological Sciences</i> , 2006 , 246, 153-8	3.2	84
58	Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons. <i>FEBS Letters</i> , 2006 , 580, 484-90	3.8	60
57	Coenzyme Q is irreplaceable by demethoxy-coenzyme Q in plasma membrane of Caenorhabditis elegans. <i>FEBS Letters</i> , 2006 , 580, 1740-6	3.8	17
56	Resveratrol improves health and survival of mice on a high-calorie diet. <i>Nature</i> , 2006 , 444, 337-42	50.4	3520
55	Adaptations to oxidative stress induced by vitamin E deficiency in rat liver. <i>Journal of Bioenergetics and Biomembranes</i> , 2006 , 38, 309-17	3.7	14
54	Coenzyme Q distribution in HL-60 human cells depends on the endomembrane system. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2005 , 1713, 129-37	3.8	50
53	The role of ubiquinone in Caenorhabditis elegans longevity. <i>Ageing Research Reviews</i> , 2005 , 4, 41-53	12	19
52	Specificity of coenzyme Q10 for a balanced function of respiratory chain and endogenous ubiquinone biosynthesis in human cells. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2005 , 1706, 174-8	3 ^{4.6}	36
51	C. elegans knockouts in ubiquinone biosynthesis genes result in different phenotypes during larval development. <i>BioFactors</i> , 2005 , 25, 21-9	6.1	21
50	Coenzyme Q and the regulation of intracellular steady-state levels of superoxide in HL-60 cells. <i>BioFactors</i> , 2005 , 25, 31-41	6.1	17
49	Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet. <i>Experimental Gerontology</i> , 2005 , 40, 694-706	4.5	53
48	Dicoumarol relieves serum withdrawal-induced G0/1 blockade in HL-60 cells through a superoxide-dependent mechanism. <i>Biochemical Pharmacology</i> , 2005 , 69, 1613-25	6	12
47	Coenzyme Q-dependent functions of plasma membrane in the aging process. <i>Age</i> , 2005 , 27, 139-46		8
46	Regulation of ceramide signaling by plasma membrane coenzyme Q reductases. <i>Methods in Enzymology</i> , 2004 , 378, 200-6	1.7	17
45	Stabilization of extracellular ascorbate mediated by coenzyme Q transmembrane electron transport. <i>Methods in Enzymology</i> , 2004 , 378, 207-17	1.7	10
44	Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity. <i>Journal of Biological Chemistry</i> , 2004 , 279, 2599	9 <i>5</i> - 6 00	4 ⁵⁶
43	NAD(P)H:quinone oxidoreductase 1 expression, hydrogen peroxide levels, and growth phase in HeLa cells. <i>Methods in Enzymology</i> , 2004 , 382, 234-43	1.7	9

(1998-2003)

42	Reactive oxygen species mediate the down-regulation of mitochondrial transcripts and proteins by tumour necrosis factor-alpha in L929 cells. <i>Biochemical Journal</i> , 2003 , 370, 609-19	3.8	16
41	Hydrogen peroxide- and cell-density-regulated expression of NADH-cytochrome b5 reductase in HeLa cells. <i>Journal of Bioenergetics and Biomembranes</i> , 2003 , 35, 169-79	3.7	29
40	Antioxidant response induced by serum withdrawal protects HL-60 cells against inhibition of NAD(P)H:quinone oxidoreductase 1. <i>BioFactors</i> , 2003 , 18, 219-28	6.1	4
39	Caenorhabditis elegans ubiquinone biosynthesis genes. <i>BioFactors</i> , 2003 , 18, 237-44	6.1	9
38	Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. <i>FASEB Journal</i> , 2003 , 17, 1135-7	0.9	62
37	A novel plasma membrane quinone reductase and NAD(P)H:quinone oxidoreductase 1 are upregulated by serum withdrawal in human promyelocytic HL-60 cells. <i>Journal of Bioenergetics and Biomembranes</i> , 2002 , 34, 209-19	3.7	16
36	Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. <i>Journal of Biological Chemistry</i> , 2002 , 277, 10973-81	5.4	83
35	Ubiquinol inhibition of neutral sphingomyelinase in liver plasma membrane: specific inhibition of the Mg(2+)-dependent enzyme and role of isoprenoid chain. <i>Biochemical and Biophysical Research Communications</i> , 2002 , 297, 581-6	3.4	20
34	Neutral magnesium-dependent sphingomyelinase from liver plasma membrane: purification and inhibition by ubiquinol. <i>Journal of Bioenergetics and Biomembranes</i> , 2001 , 33, 143-53	3.7	28
33	Interactions between ascorbyl free radical and coenzyme Q at the plasma membrane. <i>Journal of Bioenergetics and Biomembranes</i> , 2000 , 32, 199-210	3.7	36
32	NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane. <i>Antioxidants and Redox Signaling</i> , 2000 , 2, 251-62	8.4	29
31	Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. <i>Antioxidants and Redox Signaling</i> , 2000 , 2, 263-75	8.4	39
30	Plasma membrane redox system in the control of stress-induced apoptosis. <i>Antioxidants and Redox Signaling</i> , 2000 , 2, 213-30	8.4	94
29	Extramitochondrial Functions of Coenzyme Q. <i>Modern Nutrition</i> , 2000 , 83-98		1
28	Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. <i>Cell Death and Differentiation</i> , 1999 , 6, 155-65	12.7	142
27	Protective role of ubiquinone in vitamin E and selenium-deficient plasma membranes. <i>BioFactors</i> , 1999 , 9, 163-70	6.1	40
26	Genetic evidence for coenzyme Q requirement in plasma membrane electron transport. <i>Journal of Bioenergetics and Biomembranes</i> , 1998 , 30, 465-75	3.7	52
25	Plasma membrane NADH-coenzyme Q0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction. <i>FEBS Letters</i> , 1998 , 428, 43-6	3.8	49

24	Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae. <i>Journal of Biological Chemistry</i> , 1998 , 273, 8099-105	5.4	41
23	Redox regulation of cAMP levels by ascorbate in 1,25-dihydroxy- vitamin D3-induced differentiation of HL-60 cells. <i>Biochemical Journal</i> , 1998 , 331 (Pt 1), 21-7	3.8	22
22	Antioxidative Role of Ubiquinone in the Animal Plasma Membrane 1998, 247-265		10
21	Involvement of Plasma Membrane Redox Systems in Growth Control of Animal and Plant Cells 1998 , 193-213		7
20	Role of ascorbate in the activation of NF-kappaB by tumour necrosis factor-alpha in T-cells. <i>Biochemical Journal</i> , 1997 , 325 (Pt 1), 23-8	3.8	41
19	The diversity of coenzyme Q function. <i>Molecular Aspects of Medicine</i> , 1997 , 18 Suppl, S1-6	16.7	92
18	Redox modulation of the response of NADH oxidase activity of rat liver plasma membranes to cyclic AMP plus ATP. <i>Molecular and Cellular Biochemistry</i> , 1997 , 173, 71-7	4.2	5
17	Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. <i>Journal of Bioenergetics and Biomembranes</i> , 1997 , 29, 251-7	3.7	66
16	Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal. <i>Journal of Bioenergetics and Biomembranes</i> , 1997 , 29, 259-67	3.7	59
15	Ascorbate and the plasma membrane. A new view of cell growth control. <i>Sub-Cellular Biochemistry</i> , 1996 , 25, 57-8	5.5	14
14	Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae. <i>Journal of Bioenergetics and Biomembranes</i> , 1995 , 27, 597-603	3.7	14
13	Ascorbate function at the plasma membrane. BBA - Biomembranes, 1994, 1197, 1-13		69
12	Relationship between apoplastic ascorbate regeneration and the stimulation of root growth in Allium cepa L <i>Plant Science</i> , 1994 , 100, 23-29	5.3	26
11	Cyclic AMP-plus ATP-dependent modulation of the NADH oxidase activity of porcine liver plasma membranes. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 1994 , 1224, 566-74	4.9	6
10	The onset of cell proliferation is stimulated by ascorbate free radical in onion root primordia. <i>Biology of the Cell</i> , 1993 , 77, 231-233	3.5	19
9	A quantitative ultrastructural and cytochemical study of TPA-induced differentiation in HL-60 cells. <i>Leukemia Research</i> , 1993 , 17, 863-72	2.7	5
8	The effect of ascorbate free radical on the energy state of the plasma membrane of onion (Allium cepa L.) root cells: alteration of K+ efflux by ascorbate?. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1992 , 1098, 177-183	4.6	21
7	Pyrophosphate-induced acidification of trans cisternal elements of rat liver Golgi apparatus. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1992 , 1104, 188-94	3.8	18

LIST OF PUBLICATIONS

6	Growth factor-stimulated trans plasma membrane electron transport in HL-60 cells. <i>FEBS Letters</i> , 1992 , 299, 223-6	3.8	41	
5	Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1991 , 1073, 380-5	4	67	
4	Differential morphometric values induced in Golgi apparatus of higher plant cells by aldehyde and permanganate fixation. <i>Journal of Electron Microscopy Technique</i> , 1989 , 11, 1-8		8	
3	The role of ascorbate in biomembrane energetics. <i>Annals of the New York Academy of Sciences</i> , 1987 , 498, 153-71	6.5	40	
2	Lectin binding patterns in amphibian epidermis. Acta Histochemica, 1987, 81, 51-7	2	16	
1	Mitochondrial Na+ controls oxidative phosphorylation and hypoxic redox signalling		3	