

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4365970/publications.pdf Version: 2024-02-01

Huili

#	Article	IF	CITATIONS
1	Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Science Advances, 2021, 7, .	10.3	127
2	A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Molecular Therapy - Methods and Clinical Development, 2021, 22, 122-132.	4.1	20
3	Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29691-29701.	7.1	90
4	Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. Molecular Therapy, 2020, 28, 2044-2055.	8.2	51
5	Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing. Developmental Cell, 2020, 53, 102-116.e8.	7.0	95
6	Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Science Advances, 2020, 6, eaay6812.	10.3	114
7	In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nature Communications, 2019, 10, 4537.	12.8	32
8	CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Science Advances, 2019, 5, eaav4324.	10.3	190
9	Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Science Advances, 2018, 4, eaap9004.	10.3	200
10	Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 2018, 362, 86-91.	12.6	405
11	Proteomic Characterization of the Heart and Skeletal Muscle Reveals Widespread Arginine ADP-Ribosylation by the ARTC1 Ectoenzyme. Cell Reports, 2018, 24, 1916-1929.e5.	6.4	55
12	Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Molecular Cancer, 2017, 16, 32.	19.2	39
13	CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science Advances, 2017, 3, e1602814.	10.3	189
14	Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017, 356, 323-327.	12.6	301
15	Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11950-11955.	7.1	48
16	Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Science Translational Medicine, 2017, 9, .	12.4	188
17	Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Amino Acids, 2016, 48, 2401-2410.	2.7	24
18	Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4494-503.	7.1	34

Hui Li

#	Article	IF	CITATIONS
19	Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016, 351, 400-403.	12.6	804
20	Intracellular complexes of the early-onset torsion dystonia-associated AAA+ ATPase TorsinA. SpringerPlus, 2014, 3, 743.	1.2	8
21	Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum. Biochemical and Biophysical Research Communications, 2013, 439, 191-195.	2.1	12
22	Alternative mRNA Splicing Generates Two Distinct ADAM12 Prodomain Variants. PLoS ONE, 2013, 8, e75730.	2.5	8
23	An essential role of metalloprotease-disintegrin ADAM12 in triple-negative breast cancer. Breast Cancer Research and Treatment, 2012, 135, 759-769.	2.5	33
24	Metalloprotease-Disintegrin ADAM12 Expression Is Regulated by Notch Signaling via MicroRNA-29. Journal of Biological Chemistry, 2011, 286, 21500-21510.	3.4	32
25	Altered ion transport by thyroid epithelia from <i>CFTR</i> ^{â^'/â^} pigs suggests mechanisms for hypothyroidism in cystic fibrosis. Experimental Physiology, 2010, 95, 1132-1144.	2.0	37
26	The Role of SnoN in Transforming Growth Factor β1-induced Expression of Metalloprotease-Disintegrin ADAM12. Journal of Biological Chemistry, 2010, 285, 21969-21977.	3.4	30
27	The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation. Journal of Cell Science, 2008, 121, 3815-3823.	2.0	52
28	Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 851, 71-82.	2.3	136
29	Activities of arginase I and II are limiting for endothelial cell proliferation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R64-R69.	1.8	94
30	Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E75-E82.	3.5	302
31	Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochemical Journal, 2001, 353, 245.	3.7	71
32	Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. Biomedical Applications, 2000, 746, 199-207.	1.7	137
33	Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2000, 126, 115-123.	1.8	50
34	Glucosamine Inhibits Inducible Nitric Oxide Synthesis. Biochemical and Biophysical Research Communications, 2000, 279, 234-239.	2.1	78