Anneke H Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4365636/publications.pdf Version: 2024-02-01

ANNEKE H MADTIN

#	Article	IF	CITATIONS
1	Network Forming Properties of Various Proteins Adsorbed at the Air/Water Interface in Relation to Foam Stability. Journal of Colloid and Interface Science, 2002, 254, 175-183.	9.4	228
2	Fibril Formation from Pea Protein and Subsequent Gel Formation. Journal of Agricultural and Food Chemistry, 2014, 62, 2418-2427.	5.2	138
3	Food-grade electrospinning of proteins. Innovative Food Science and Emerging Technologies, 2013, 20, 269-275.	5.6	103
4	Conformational Aspects of Proteins at the Air/Water Interface Studied by Infrared Reflectionâ~'Absorption Spectroscopy. Langmuir, 2003, 19, 2922-2928.	3.5	80
5	Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM). Food Hydrocolloids, 2006, 20, 817-824.	10.7	76
6	Gelation and interfacial behaviour of vegetable proteins. Current Opinion in Colloid and Interface Science, 2002, 7, 462-468.	7.4	73
7	Interfacial rheological properties and conformational aspects of soy glycinin at the air/water interface. Food Hydrocolloids, 2002, 16, 63-71.	10.7	70
8	Mixing whey and soy proteins: Consequences for the gel mechanical response and water holding. Food Hydrocolloids, 2016, 60, 216-224.	10.7	65
9	Characterization of Heat-Set Gels from RuBisCO in Comparison to Those from Other Proteins. Journal of Agricultural and Food Chemistry, 2014, 62, 10783-10791.	5.2	59
10	Reprint of "Food-grade electrospinning of proteins". Innovative Food Science and Emerging Technologies, 2014, 24, 138-144.	5.6	57
11	Stressâ^'Strain Curves of Adsorbed Protein Layers at the Air/Water Interface Measured with Surface Shear Rheology. Langmuir, 2002, 18, 1238-1243.	3.5	48
12	Comparison of the functional properties of RuBisCO protein isolate extracted from sugar beet leaves with commercial whey protein and soy protein isolates. Journal of the Science of Food and Agriculture, 2019, 99, 1568-1576.	3.5	48
13	Correlation between Mechanical Behavior of Protein Films at the Air/Water Interface and Intrinsic Stability of Protein Molecules. Langmuir, 2005, 21, 4083-4089.	3.5	45
14	Relating water holding of ovalbumin gels to aggregate structure. Food Hydrocolloids, 2016, 52, 87-94.	10.7	44
15	Microstructure and rheology of globular protein gels in the presence of gelatin. Food Hydrocolloids, 2016, 55, 34-46.	10.7	34
16	Modulating fracture properties of mixed protein systems. Food Hydrocolloids, 2015, 44, 59-65.	10.7	33
17	Celatin increases the coarseness of whey protein gels and impairs water exudation from the mixed gel at low temperatures. Food Hydrocolloids, 2016, 56, 236-244.	10.7	21
18	Interactions in protein mixtures. Part II: A virial approach to predict phase behavior. Food Hydrocolloids, 2016, 52, 991-1002.	10.7	21

Anneke H Martin

#	Article	IF	CITATIONS
19	Interactions in protein mixtures. Part I: Second virial coefficients from osmometry. Food Hydrocolloids, 2016, 52, 982-990.	10.7	20
20	Modulation of the Gelation Efficiency of Fibrillar and Spherical Aggregates by Means of Thiolation. Journal of Agricultural and Food Chemistry, 2013, 61, 11628-11635.	5.2	17
21	Modulating the aggregation behaviour to restore the mechanical response of acid induced mixed gels of sodium caseinate and soy proteins. Food Hydrocolloids, 2016, 58, 215-223.	10.7	16
22	The microstructure and rheology of homogeneous and phase separated gelatine gels. Food Hydrocolloids, 2016, 61, 311-317.	10.7	9