Mandar Bawadekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4365510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptidylarginine Deiminase 2 in Murine Antiviral and Autoimmune Antibody Responses. Journal of Immunology Research, 2022, 2022, 1-12.	0.9	0
2	Disordered Antigens and Epitope Overlap Between Anti–Citrullinated Protein Antibodies and Rheumatoid Factor in Rheumatoid Arthritis. Arthritis and Rheumatology, 2020, 72, 262-272.	2.9	18
3	Reduced Anti-Histone Antibodies and Increased Risk of Rheumatoid Arthritis Associated with a Single Nucleotide Polymorphism in PADI4 in North Americans. International Journal of Molecular Sciences, 2019, 20, 3093.	1.8	13
4	Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight, 2019, 4, .	2.3	32
5	DNA Area and NETosis Analysis (DANA): a High-Throughput Method to Quantify Neutrophil Extracellular Traps in Fluorescent Microscope Images. Biological Procedures Online, 2018, 20, 7.	1.4	50
6	Relative efficiencies of peptidylarginine deiminase 2 and 4 in generating target sites for anti-citrullinated protein antibodies in fibrinogen, alpha-enolase and histone H3. PLoS ONE, 2018, 13, e0203214.	1.1	27
7	Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. Journal of Autoimmunity, 2017, 80, 39-47.	3.0	87
8	Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1Ĵ² and TNFĴ±. Science Immunology, 2017, 2, .	5.6	80
9	Tumor necrosis factor alpha, citrullination, and peptidylarginine deiminase 4 in lung and joint inflammation. Arthritis Research and Therapy, 2016, 18, 173.	1.6	30
10	The Extracellular IFI16 Protein Propagates Inflammation in Endothelial Cells Via p38 MAPK and NF-κB p65 Activation. Journal of Interferon and Cytokine Research, 2015, 35, 441-453.	0.5	22
11	Mislocalization of the interferon inducible protein IFI16 by environmental insults: Implications in autoimmunity. Cytokine and Growth Factor Reviews, 2015, 26, 213-219.	3.2	17
12	Innate Nuclear Sensor IFI16 Translocates into the Cytoplasm during the Early Stage of <i>In Vitro</i> Human Cytomegalovirus Infection and Is Entrapped in the Egressing Virions during the Late Stage. Journal of Virology, 2014, 88, 6970-6982.	1.5	92
13	Nuclear DNA Sensor IFI16 as Circulating Protein in Autoimmune Diseases Is a Signal of Damage that Impairs Endothelial Cells through High-Affinity Membrane Binding. PLoS ONE, 2013, 8, e63045.	1.1	39