Xiu Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4365056/publications.pdf

Version: 2024-02-01

37	800 citations	471371 17 h-index	501076 28 g-index
papers	citations	II-IIIdex	g-index
37 all docs	37 docs citations	37 times ranked	1039 citing authors

#	Article	IF	CITATIONS
1	Phase-dependent enhancement for CO ₂ photocatalytic reduction over CeO ₂ /TiO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 7967-7975.	2.1	73
2	TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation. Research on Chemical Intermediates, 2016, 42, 3609-3624.	1.3	55
3	In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles. Nature Communications, 2017, 8, 14462.	5.8	47
4	Wormlike micelles formed using Gemini surfactants with quaternary hydroxyethyl methylammonium headgroups. Soft Matter, 2013, 9, 9667.	1.2	42
5	Micelle formation by N-alkyl-N-methylpiperidinium bromide ionic liquids in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412, 90-95.	2.3	40
6	Lyotropic liquid crystalline phases with a series of N-alkyl-N-methylpiperidinium bromides and water. Journal of Colloid and Interface Science, 2013, 389, 199-205.	5.0	35
7	Wormlike Micelles of a Cationic Surfactant in Polar Organic Solvents: Extending Surfactant Self-Assembly to New Systems and Subzero Temperatures. Langmuir, 2019, 35, 12782-12791.	1.6	32
8	Ionic self-assembled solid-like vesicles and their temperature-induced transformation. Journal of Materials Chemistry, 2009, 19, 2037.	6.7	31
9	A Nonaqueous Lyotropic Liquid Crystal Fabricated by a Polyoxyethylene Amphiphile in Protic Ionic Liquid. Langmuir, 2010, 26, 7802-7807.	1.6	30
10	Comparison of Aggregation Behaviors of a Phytosterol Ethoxylate Surfactant in Protic and Aprotic Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 9439-9444.	1.2	30
11	Controlled fabrication of hierarchically porous Ti/Sb–SnO2anode from honeycomb to network structure with high electrocatalytic activity. RSC Advances, 2015, 5, 28803-28813.	1.7	30
12	From environmental pollutant to activated carbons for high-performance supercapacitors. Electrochimica Acta, 2016, 201, 96-105.	2.6	29
13	Lyotropic liquid crystalline phases formed by phyosterol ethoxylates in room-temperature ionic liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 225-232.	2.3	26
14	Nonaqueous Lyotropic Liquid-Crystalline Phases Formed by Gemini Surfactants in a Protic Ionic Liquid. Langmuir, 2012, 28, 2476-2484.	1.6	25
15	Mesoporous graphitic carbon nitride and carbon–TiO 2 hybrid composite photocatalysts with enhanced photocatalytic activity under visible light irradiation. Journal of Environmental Chemical Engineering, 2016, 4, 797-807.	3.3	24
16	Phase behaviours of a cationic surfactant in deep eutectic solvents: from micelles to lyotropic liquid crystals. Physical Chemistry Chemical Physics, 2018, 20, 12175-12181.	1.3	23
17	Facile synthesis of carbon-Bi2WO6 with enhanced visible-light photocatalytic activities. Journal of Nanoparticle Research, $2016,18,1.$	0.8	22
18	The Unusual Rheology of Wormlike Micelles in Glycerol: Comparable Timescales for Chain Reptation and Segmental Relaxation. Langmuir, 2020, 36, 6370-6377.	1.6	20

#	Article	IF	Citations
19	Effects of a Spacer on the Phase Behavior of Gemini Surfactants in Ethanolammonium Nitrate. Langmuir, 2017, 33, 4328-4336.	1.6	18
20	Construction and transformation of stimuli-responsive vesicles from the ferrocene derivative supramolecular amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 98-104.	2.3	17
21	Environmental stimuli induced phase transition in the aqueous mixture solution of Gemini surfactants and sodium deoxycholate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 67-74.	2.3	17
22	Phase Transition of a Quaternary Ammonium Gemini Surfactant Induced by Minor Structural Changes of Protic Ionic Liquids. Langmuir, 2014, 30, 1522-1530.	1.6	16
23	Unique Phase Behaviors in the Gemini Surfactant/EAN Binary System: The Role of the Hydroxyl Group. Langmuir, 2015, 31, 13511-13518.	1.6	16
24	Facile preparation of melamine foam with superhydrophobic performance and its system integration with prototype equipment for the clean-up of oil spills on water surface. Science of the Total Environment, 2022, 833, 155184.	3.9	15
25	Aggregation behaviors of alkyl ether carboxylate surfactants in water. Journal of Molecular Liquids, 2017, 227, 161-167.	2.3	13
26	Molecular packing of surface active ionic liquids in a deep eutectic solvent: a small angle X-ray scattering (SAXS) study. Soft Matter, 2019, 15, 5060-5066.	1.2	13
27	Production of Fibres from Lunar Soil: Feasibility, Applicability and Future Perspectives. Advanced Fiber Materials, 2022, 4, 923-937.	7.9	12
28	Lyotropic Liquid Crystalline Phases of a Phytosterol Ethoxylate in Amide Solvents. Langmuir, 2013, 29, 11013-11021.	1.6	10
29	Unique lamellar lyotropic liquid crystal phases of nonionic phytosterol ethoxylates in glycerol. RSC Advances, 2015, 5, 101393-101400.	1.7	9
30	In Situ Raman Probing of Chlorphenol Degradation on Different Facets of K ₃ B ₆ O ₁₀ Br Single Crystal. Journal of Physical Chemistry C, 2018, 122, 14574-14581.	1.5	7
31	Direct visualization of interfacial debonding in FRP structure using an AIE molecule. Composites Communications, 2021, 27, 100816.	3.3	7
32	Synthesis and characterization on a novel series of protic pyrrolidinium surfactants. Chinese Chemical Letters, 2010, 21, 385-387.	4.8	4
33	Facile preparation of a polysilsesquioxane sheet with a three-dimensional structure. Materials Chemistry Frontiers, 2021, 5, 7176-7183.	3.2	4
34	Soft aggregates formed by a nonionic phytosterol ethoxylate and \hat{l}^2 -cyclodextrin in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 79-86.	2.3	3
35	Phase-Selective Gelation of the Water Phase in an Oil–Water Mixture: An Approach Based on Oil-Activated Nanoparticle Assembly in Water. Langmuir, 2021, 37, 8107-8114.	1.6	3
36	Fluorescence and stimuli-responsive performance of polymer composites filled with tetraphenylethene derivatives. Polymer Chemistry, 2022, 13, 3126-3135.	1.9	2

ARTICLE

Optimal Design of Two-Degree-of-Freedom Control Scheme for Integrating Processes with Time Delay.,

Optimal Design of Two-Degree-of-Freedom Control Scheme for Integrating Processes with Time Delay.,

Optimal Design of Two-Degree-of-Freedom Control Scheme for Integrating Processes with Time Delay.,

Optimal Design of Two-Degree-of-Freedom Control Scheme for Integrating Processes with Time Delay.